A054682 a(n) = smallest prime p = prime(k) such that gcd( prime(k+1) - prime(k), prime(k+2) - prime(k+1) ) is a multiple of 2n.
3, 89, 47, 1823, 1627, 199, 5939, 5591, 15823, 83117, 259033, 16763, 365851, 1074167, 69593, 1625027, 2541289, 255767, 11772613, 3312227, 247099, 23374859, 25767389, 3565931, 21369059, 15340943, 6314393, 59859131, 101996837, 4911251, 70136597, 166185431, 12012677, 198429983, 247837313, 23346737, 298626077, 1321272031, 43607351, 464208809
Offset: 1
Keywords
Crossrefs
Different from A070018.
Programs
-
PARI
for(n=1,50,p=2: np=3: while((np-p)%(2*n)||(nextprime(np+2)-np)%(2*n),p=np: np=nextprime(np+2)): print1(p","))
Formula
a(n)=Min{x : A057467(x) is a multiple of 2n}
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Nov 09 2000
Corrected and extended by Ralf Stephan, Feb 23 2004
More terms from Olaf Voß, Feb 17 2008