cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A070018 a(n) = smallest prime p = prime(k) such that gcd( prime(k+1) - prime(k), prime(k+2) - prime(k+1) ) = 2n.

Original entry on oeis.org

3, 89, 47, 1823, 1627, 199, 5939, 5591, 15823, 83117, 259033, 16763, 365851, 1074167, 69593, 1625027, 2541289, 255767, 11772613, 3312227, 247099, 23374859, 25767389, 3565931, 21369059, 15340943, 6314393, 59859131, 101996837, 4911251, 70136597, 166185431, 12012677, 198429983, 247837313, 23346737, 298626077
Offset: 1

Views

Author

Labos Elemer and Benoit Cloitre, Apr 12 2002

Keywords

Examples

			n=21: a(21)=247099, the consecutive prime triple {247099,247141,247183} determines {42,42} successive differences, the GCD of which is 2n=42.
		

Crossrefs

Different from A054682?

Programs

  • Mathematica
    f[x_] := GCD[Prime[x+1]-Prime[x], Prime[x+2]-Prime[x+1]]; t = Table[0, {256} ]; Do[ c = f[n]; If[c <257 && t[[b]] == 0, t[[c]] = n], {n, 2, 1000000} ]; t Prime[t]
  • PARI
    fp(n, vp) = {for (k=1, #vp-2, if (gcd(vp[k+1] - vp[k], vp[k+2] - vp[k+1]) == 2*n, return (vp[k])););}
    lista(nn) = {my(vp = primes(10000)); for (n=1, nn, my(p = fp(n, vp)); if (p, print1(p, ", "), break););} \\ Michel Marcus, Aug 29 2019

Formula

a(n) = Min{x : A057467(x)=2n}.

Extensions

Corrected and extended by Michel Marcus, Aug 29 2019
Showing 1-1 of 1 results.