cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070025 At these values of k, the 1st, 2nd, 3rd and 4th cyclotomic polynomials all give prime numbers.

Original entry on oeis.org

6, 150, 2730, 9000, 9240, 35280, 41760, 43050, 53280, 65520, 76650, 96180, 111030, 148200, 197370, 207480, 213360, 226380, 254280, 264600, 309480, 332160, 342450, 352740, 375450, 381990, 440550, 458790, 501030, 527070, 552030, 642360, 660810
Offset: 1

Views

Author

Labos Elemer, May 07 2002

Keywords

Comments

Numbers k such that k-1, k+1, k^2+k+1 and k^2+1 are all primes.

Examples

			For k = 6: 5, 7, 43 and 37 are prime values of the first 4 cyclotomic polynomials.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[PrimeQ[n-1]&&PrimeQ[n+1]&&PrimeQ[1+n+n^2]&&PrimeQ[1+n^2], AppendTo[lst, n]], {n, 10^6}];lst (* Vladimir Joseph Stephan Orlovsky, Aug 19 2008 *)
    Select[Range[10^6], Function[k, AllTrue[Cyclotomic[#, k] & /@ Range@ 4, PrimeQ]]] (* Michael De Vlieger, Jul 18 2017 *)
  • PARI
    is(k) = isprime(k-1) && isprime(k+1) && isprime(k^2+1) && isprime(k^2+k+1); \\ Amiram Eldar, Sep 24 2024