A070027 Prime numbers whose initial, all intermediate and final iterated sums of digits are primes.
2, 3, 5, 7, 11, 23, 29, 41, 43, 47, 61, 83, 101, 113, 131, 137, 151, 173, 191, 223, 227, 241, 263, 281, 311, 313, 317, 331, 353, 401, 421, 443, 461, 599, 601, 641, 797, 821, 887, 911, 977, 1013, 1019, 1031, 1033, 1051, 1091, 1103, 1109, 1123, 1163, 1181, 1213
Offset: 1
Examples
599 is a term because 599, 5+9+9 = 23 and 2+3 = 5 are all prime. 2999 is a term because 2999, 2+9+9+9 = 29, 2+9 = 11 and 1+1 = 2 are all prime. See A062802 and A070026 for related comments.
Links
- Alex Costea, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
- Glyn Harman, Counting Primes whose Sum of Digits is Prime, J. Integer Seq., 15 (2012), Article 12.2.2.
Crossrefs
Programs
-
Mathematica
dspQ[n_] := TrueQ[Union[PrimeQ[NestWhileList[Plus@@IntegerDigits[#] &, n, # > 9 &]]] == {True}]; Select[Prime[Range[200]], dspQ] (* Alonso del Arte, Aug 17 2011 *) isdpQ[n_]:=AllTrue[Rest[NestWhileList[Total[IntegerDigits[#]]&,n,#>9&]],PrimeQ]; Select[Prime[Range[300]],isdpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 12 2017 *)
-
PARI
isA070027(n)={ while(isprime(n), n<9 && return(1); n=vector(#n=eval(Vec(Str(n))),i,1)*n~)} \\ M. F. Hasler, Jun 28 2009
-
Python
from sympy import isprime def ok(n): return isprime(n) and (n < 10 or ok(sum(map(int, str(n))))) print([k for k in range(2, 1214) if ok(k)]) # Michael S. Branicky, May 22 2025
Formula
Prime p is a term if and only if p < 10 or A007953(p) is a term. - Michael S. Branicky, May 22 2025
Comments