A070034 Numbers n such that n! reduced modulo 2^n is also a power of 2.
1, 2, 4, 6, 8, 16, 19, 20, 21, 27, 32, 35, 36, 39, 40, 42, 44, 52, 64, 67, 68, 72, 73, 79, 80, 88, 92, 101, 104, 109, 116, 128, 131, 132, 136, 137, 141, 144, 145, 146, 150, 159, 160, 176, 177, 185, 188, 202, 204, 208, 209, 233, 244, 256, 259, 260, 264, 265
Offset: 1
Keywords
Examples
Not rarely,consecutive integers are in the sequence like {19,20,21}, providing residues {65536,262144,262144}.
Links
- T. D. Noe, Table of n, a(n) for n = 1..800
Programs
-
Mathematica
t = {}; Do[s=Mod[n!, 2^n]; If[IntegerQ[Log[2, s]], AppendTo[t, n]], {n, 300}]; t Select[Range[300],IntegerQ[Log2[Mod[#!,2^#]]]&] (* Harvey P. Dale, Aug 04 2021 *)
Formula
Mod[a(n)!, 2^a(n)] = A068496(n) = 2^w for some integer w.