A070038 a(n) = sum of divisors of n that are at least sqrt(n).
1, 2, 3, 6, 5, 9, 7, 12, 12, 15, 11, 22, 13, 21, 20, 28, 17, 33, 19, 35, 28, 33, 23, 50, 30, 39, 36, 49, 29, 61, 31, 56, 44, 51, 42, 81, 37, 57, 52, 78, 41, 84, 43, 77, 69, 69, 47, 108, 56, 85, 68, 91, 53, 108, 66, 106, 76, 87, 59, 147, 61, 93, 93, 120, 78, 132, 67, 119, 92
Offset: 1
Keywords
Examples
a(20) = 35: the divisors of 20 are 1,2,4,5,10 and 20. a(20) = 5 + 10 + 20 = 35. a(96) = 228 = 96 + 48 + 32 + 24 + 16 + 12 (sum of an even number of divisors); a(225) = 385 = 225 + 75 + 45 + 25 + 15 (sum of an odd number of divisors).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 1 to 200 do c[n] := 0:d := divisors(n):for i from 1 to nops(d) do if d[i]>=n^.5 then c[n] := c[n]+d[i]:fi:od:od:seq(c[i],i=1..200);
-
Mathematica
Table[Plus @@ Select[Divisors[n], # >= Sqrt[n] &], {n, 1, 70}]
-
PARI
a(n) = sumdiv(n, d, d*(d^2>=n)); \\ Michel Marcus, Jan 22 2015
-
Sage
[sum(k for k in divisors(n) if k^2>=n) for n in range (1,70)] # Giuseppe Coppoletta, Jan 21 2015
Comments