A070086 Areas of integer triangles [A070080(n), A070081(n), A070082(n)], rounded values.
0, 1, 2, 1, 2, 3, 2, 3, 4, 4, 4, 2, 4, 4, 6, 5, 6, 7, 3, 5, 5, 7, 8, 6, 7, 8, 9, 3, 6, 6, 9, 7, 10, 11, 7, 9, 10, 11, 12, 4, 6, 8, 10, 8, 12, 12, 14, 8, 10, 12, 13, 12, 15, 16, 4, 7, 9, 12, 10, 14, 10, 15, 16, 17, 9, 12, 13, 15, 14, 17, 18, 19, 5, 8, 10
Offset: 1
Examples
[A070080(25), A070081(25), A070082(25)] = [3,5,6] and s = A070083(25)/2 = (3+5+6)/2 = 7: a(25) = sqrt(s*(s-3)*(s-5)*(s-6)) = sqrt(7*(7-3)*(7-5)*(7-6)) = sqrt(7*4*2*1) = sqrt(56) = 7.48331, rounded = 7.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..972
- Eric Weisstein's World of Mathematics, Heron's Formula.
- Reinhard Zumkeller, Integer-sided triangles
Crossrefs
Programs
-
Mathematica
m = 50; (* max perimeter *) sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &]; triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&]; area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)] // Round]; area /@ triangles (* Jean-François Alcover, Oct 03 2021 *)
Comments