A070091 Number of isosceles integer triangles with perimeter n and relatively prime side lengths.
0, 0, 1, 0, 1, 0, 2, 1, 1, 1, 3, 1, 3, 1, 2, 2, 4, 2, 5, 2, 2, 2, 6, 2, 5, 3, 5, 3, 7, 2, 8, 4, 4, 4, 6, 3, 9, 4, 6, 4, 10, 4, 11, 5, 6, 5, 12, 4, 10, 5, 8, 6, 13, 4, 10, 6, 8, 7, 15, 4, 15, 7, 10, 8, 12, 6, 17, 8, 10, 6, 18, 6, 18, 9, 10, 9, 14, 6, 20, 8, 13
Offset: 1
Keywords
Examples
For n=15 there are A005044(15)=7 integer triangles: [1,7,7], [2,6,7], [3,5,7], [3,6,6], [4,4,7], [4,5,6] and [5,5,5]: four are isosceles: [1<7=7], [3<6=6], [4=4<7] and [5=5=5], but GCD(3,6,6)>1 and GCD(5,5,5)>1, therefore a(15)=2.
Links
- Reinhard Zumkeller, Integer-sided triangles
Programs
-
Mathematica
m = 81 (* max perimeter *); sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &]; triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &] ; a[n_] := Count[triangles, t_ /; Total[t] == n && Length[Union[t]] < 3 && GCD @@ t == 1]; Table[a[n], {n, 1, m}] (* Jean-François Alcover, Oct 05 2021 *)
Comments