A070104 Number of integer triangles with perimeter n and relatively prime side lengths which are obtuse and scalene.
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 2, 3, 1, 4, 3, 6, 2, 7, 4, 8, 4, 8, 6, 10, 6, 12, 8, 14, 8, 16, 11, 18, 11, 17, 14, 21, 12, 25, 18, 25, 15, 30, 19, 32, 20, 32, 25, 38, 23, 40, 28, 41, 28, 47, 31, 51, 34, 46, 40, 55, 35, 61, 44, 58, 41, 68
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- R. Zumkeller, Integer-sided triangles
Crossrefs
Programs
-
Maple
f:= proc(n) local a,b,q,bmin,bmax,t; t:= 0; for a from 1 to n/3 do if n::even then bmin:= max(a+1,n/2-a+1) else bmin:= max(a+1,(n+1)/2-a) fi; q:= (n^2-2*n*a)/(2*(n-a)); if q::integer then bmax:= min((n-a)/2, q-1) else bmax:= min((n-a)/2, floor(q)) fi; t:= t + nops(select(b -> igcd(a,b,n-a-b) = 1, [$bmin .. bmax])) od; t end proc: map(f, [$1..100]); # Robert Israel, Jul 26 2024