A070105 Number of integer triangles with perimeter n and prime side lengths which are obtuse and scalene.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 0, 0, 3, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 1, 0, 3, 0, 4, 0, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 3, 0, 1, 0, 5, 0, 4, 0, 5, 0, 5, 0
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- R. Zumkeller, Integer-sided triangles
Crossrefs
Programs
-
Maple
f:= proc(n) local a,b,q,bmin,bmax,t; t:= 0; if n::even then return 0 fi; for a from 1 to n/3 by 2 do if not isprime(a) then next fi; bmin:= max(a+1,(n+1)/2-a); if bmin::even then bmin:= bmin+1 fi; q:= (n^2-2*n*a)/(2*(n-a)); if q::integer then bmax:= min((n-a)/2, q-1) else bmax:= min((n-a)/2, floor(q)) fi; t:= t + nops(select(b -> isprime(b) and isprime(n-a-b), [seq(b,b=bmin .. bmax,2)])) od; t end proc: map(f, [$1..100]); # Robert Israel, Jul 26 2024
Comments