cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A070110 Numbers k such that [A070080(k), A070081(k), A070082(k)] is an integer triangle with relatively prime side lengths.

Original entry on oeis.org

1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 70, 72, 73, 74, 75, 77
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Comments

A070084(a(k)) = gcd(A070080(a(k)), A070081(a(k)), A070082(a(k))) = 1;
all integer triangles [A070080(a(k)), A070081(a(k)), A070082(a(k))] are mutually nonisomorphic.

Examples

			13 is a term: [A070080(13), A070081(13), A070082(13)]=[2,4,5], A070084(13)=gcd(2,4,5)=1.
		

Crossrefs

Programs

  • Mathematica
    m = 50 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; GCD[a, b, c] == 1] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

A070127 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse integer triangle.

Original entry on oeis.org

5, 8, 13, 14, 20, 21, 25, 26, 29, 30, 32, 36, 37, 41, 42, 44, 49, 50, 52, 56, 57, 59, 61, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 82, 86, 87, 89, 91, 96, 97, 99, 100, 101, 102, 104, 105, 110, 111, 113, 115, 118, 122, 123, 125, 126, 127
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(10)=30: [A070080(30), A070081(30), A070082(30)]=[3,5,7], A070085(30)=3^2+5^2-7^2=9+25-49=-15<0.
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]]&];
    Position[triangles, {a_, b_, c_} /; a^2 + b^2 - c^2 < 0] // Flatten (* Jean-François Alcover, Oct 11 2021 *)

A070112 Numbers n such that [A070080(n), A070081(n), A070082(n)] is a scalene integer triangle.

Original entry on oeis.org

8, 13, 17, 20, 21, 25, 29, 30, 33, 36, 37, 41, 42, 44, 45, 49, 50, 53, 56, 57, 59, 60, 62, 66, 67, 69, 70, 74, 75, 77, 78, 79, 80, 83, 86, 87, 89, 90, 92, 96, 97, 99, 100, 101, 102, 105, 106, 110, 111, 113, 114, 115, 116, 119, 122
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(17)=50: [A070080(50), A070081(50), A070082(50)]=[4<6<8].
		

Crossrefs

Programs

  • Mathematica
    m = 55 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a < b < c] // Flatten (* Jean-François Alcover, Oct 12 2021 *)

A070113 Numbers k such that [A070080(k), A070081(k), A070082(k)] is a scalene integer triangle with relatively prime side lengths.

Original entry on oeis.org

8, 13, 17, 20, 21, 25, 29, 30, 33, 36, 37, 41, 42, 44, 45, 49, 53, 56, 57, 59, 60, 62, 66, 67, 69, 70, 74, 75, 77, 78, 79, 80, 83, 86, 89, 90, 92, 96, 97, 99, 100, 101, 102, 105, 106, 110, 111, 113, 114, 115, 119, 122, 123, 125, 126
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			36 is a term [A070080(36), A070081(36), A070082(36)]=[3<6<7], A070084(36)=gcd(3,6,7)=1.
		

Crossrefs

Programs

  • Mathematica
    m = 50 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1] & // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    Position[triangles, {a_, b_, c_} /; a < b < c && GCD[a, b, c] == 1] // Flatten (* Jean-François Alcover, Oct 04 2021 *)

A070128 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse integer triangle with relatively prime side lengths.

Original entry on oeis.org

5, 8, 13, 14, 20, 21, 25, 29, 30, 32, 36, 37, 41, 42, 44, 49, 52, 56, 57, 59, 61, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 86, 89, 96, 97, 99, 100, 101, 102, 104, 105, 110, 111, 113, 115, 118, 122, 123, 125, 126, 127, 128, 130, 131, 133
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(9)=30: [A070080(30), A070081(30), A070082(30)]=[3,5,7], A070084(30)=gcd(3,5,7)=1, A070085(30)=3^2+5^2-7^2=9+25-49=-15>0.
		

Crossrefs

A070104 Number of integer triangles with perimeter n and relatively prime side lengths which are obtuse and scalene.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 2, 2, 3, 1, 4, 3, 6, 2, 7, 4, 8, 4, 8, 6, 10, 6, 12, 8, 14, 8, 16, 11, 18, 11, 17, 14, 21, 12, 25, 18, 25, 15, 30, 19, 32, 20, 32, 25, 38, 23, 40, 28, 41, 28, 47, 31, 51, 34, 46, 40, 55, 35, 61, 44, 58, 41, 68
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= proc(n) local a,b,q,bmin,bmax,t;
      t:= 0;
      for a from 1 to n/3 do
        if n::even then bmin:= max(a+1,n/2-a+1) else bmin:= max(a+1,(n+1)/2-a) fi;
        q:= (n^2-2*n*a)/(2*(n-a));
        if q::integer then bmax:= min((n-a)/2, q-1) else bmax:= min((n-a)/2, floor(q)) fi;
        t:= t + nops(select(b -> igcd(a,b,n-a-b) = 1, [$bmin .. bmax]))
      od;
      t
    end proc:
    map(f, [$1..100]); # Robert Israel, Jul 26 2024

A070130 Numbers n such that [A070080(n), A070081(n), A070082(n)] is an obtuse scalene integer triangle.

Original entry on oeis.org

8, 13, 20, 21, 25, 29, 30, 36, 37, 41, 42, 44, 49, 50, 56, 57, 59, 62, 66, 67, 69, 74, 75, 77, 78, 79, 80, 86, 87, 89, 96, 97, 99, 100, 101, 102, 105, 110, 111, 113, 115, 122, 123, 125, 126, 127, 128, 130, 131, 138, 139, 141, 143
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			a(20)=67: [A070080(67), A070081(67), A070082(67)]=[4<7<9], A070085(67)=4^2+7^2-9^2=16+49-81=-16<0.
		

Crossrefs

Showing 1-7 of 7 results.