A070136 Numbers m such that [A070080(m), A070081(m), A070082(m)] is a right integer triangle.
17, 116, 212, 370, 493, 850, 1297, 1599, 1629, 2574, 2778, 3751, 4298, 4370, 5251, 5286, 6476, 9169, 10066, 12398, 12441, 12520, 14414, 16365, 16602, 19831, 21231, 21486, 24060, 26125, 27245, 29230, 33625, 33658
Offset: 1
Keywords
Examples
116 is a term: [A070080(116), A070081(116), A070082(116)]=[6,8,10], A070085(116)=6^2+8^2-10^2=36+64-100=0. 212 is a term: [A070080(212), A070081(212), A070082(212)]=[5,12,13], A070085(212)=5^2+12^2-13^2=25+144-169=0.
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..137
- Eric Weisstein's World of Mathematics, Heronian Triangle.
- Eric Weisstein's World of Mathematics, Right Triangle.
- Reinhard Zumkeller, Integer-sided triangles
Programs
-
Mathematica
m = 500 (* max perimeter *); sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &]; triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &]; Position[triangles, {a_, b_, c_} /; a^2 + b^2 == c^2] // Flatten (* Jean-François Alcover, Oct 12 2021 *)
Comments