A070150 Triangular areas of integer Heronian triangles.
6, 36, 66, 120, 36, 120, 120, 210, 210, 120, 300, 210, 210, 300, 378, 630, 528, 780, 528, 210, 630, 630, 300, 1176, 780, 2016, 990, 1176, 2016, 2016, 1596, 780, 1770, 528, 300, 2850, 630, 2016, 780, 990, 3240, 2016, 630
Offset: 1
Examples
A070148(2)=368: [A070080(368), A070081(368), A070082(368)] = [9,10,17], area^2 = s*(s-9)*(s-10)*(s-17) with s=A070083(368)/2=(9+10+17)/2=18, area^2=18*9*8*1=16*81 is an integer square, therefore area=4*9=36=A000217(8).
Links
- Eric Weisstein's World of Mathematics, Heronian Triangle.
- R. Zumkeller, Integer-sided triangles
Programs
-
Mathematica
maxPerim = 300; maxSide = Floor[(maxPerim - 1)/2]; order[{a_, b_, c_}] := (a + b + c)*maxPerim^3 + a*maxPerim^2 + b*maxPerim + c; triangles = Reap[ Do[ If[ a + b + c <= maxPerim && c - b < a < c + b && b - a < c < b + a && c - a < b < c + a, Sow[{a, b, c}]], {a, 1, maxSide}, {b, a, maxSide}, {c, b, maxSide}]][[2, 1]]; stri = Sort[ triangles, order[#1] < order[#2] &]; area[{a_, b_, c_}] := With[{p = (a + b + c)/2}, Sqrt[p*(p - a)*(p - b)*(p - c)]]; triangularQ[n_] := IntegerQ[Sqrt[8*n + 1]]; area /@ Select[stri, IntegerQ[area[#]] && triangularQ[area[#]] &] (* Jean-François Alcover, Feb 22 2013 *)
Comments