cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070149 Areas of integer Heronian triangles [A070080(A070142(n)), A070081(A070142(n)), A070082(A070142(n))].

Original entry on oeis.org

6, 12, 12, 24, 30, 24, 48, 36, 54, 48, 60, 60, 42, 84, 66, 84, 96, 108, 60, 120, 36, 90, 126, 108, 84, 60, 120, 150, 72, 96, 168, 120, 192, 132, 204, 210, 210, 84, 144, 216, 192, 240, 114, 156, 180, 120, 240, 300, 168, 210, 168
Offset: 1

Views

Author

Reinhard Zumkeller, May 05 2002

Keywords

Examples

			A070142(2)=39: [A070080(39), A070081(39), A070082(39)] = [5,5,6], area^2 = s*(s-5)*(s-5)*(s-6) with s=A070083(39)/2=(5+5+6)/2=8, area^2=8*3*3*2=16*9 is an integer square, therefore a(2)=A070086(39)=area=4*3=12.
		

Crossrefs

Programs

  • Mathematica
    m = 500 (* max perimeter *);
    sides[per_] := Select[Reverse /@ IntegerPartitions[per, {3}, Range[ Ceiling[per/2]]], #[[1]] < per/2 && #[[2]] < per/2 && #[[3]] < per/2 &];
    triangles = DeleteCases[Table[sides[per], {per, 3, m}], {}] // Flatten[#, 1]& // SortBy[Total[#] m^3 + #[[1]] m^2 + #[[2]] m + #[[1]] &];
    area[{a_, b_, c_}] := With[{p = (a+b+c)/2}, Sqrt[p(p-a)(p-b)(p-c)]];
    Select[area /@ triangles, IntegerQ] (* Jean-François Alcover, Oct 12 2021 *)

Formula

a(n) = A070086(A070142(n)).