cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070161 Nonprime numbers n such that q=phi(n)/(sigma(n)-n-1) is an integer and n is not a prime square.

Original entry on oeis.org

15, 35, 95, 119, 143, 209, 287, 319, 323, 377, 527, 559, 779, 899, 903, 923, 989, 1007, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2507, 2759, 2911, 3239, 3599, 3827, 4031, 4607, 5183, 5207, 5249, 5459, 5543, 6439, 6887, 7067, 7279, 7739, 8159, 8639, 9179
Offset: 1

Views

Author

Labos Elemer, Apr 26 2002

Keywords

Examples

			n=35: phi(35)=24, sigma(35)=1+5+7+35=48, chowla(35)=12, quotient=2
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]/(DivisorSigma[1, n]-n-1); If[ !PrimeQ[n]&&!PrimeQ[Sqrt[n]]&&IntegerQ[s], Print[n]], {n, 2, 100000}]

Formula

q=A000010(n)/A048050(n) and n is not in A001248.

A342418 Composite numbers k such that Euler totient phi(k) is a multiple of the arithmetic derivative of k.

Original entry on oeis.org

9, 15, 25, 35, 49, 95, 119, 121, 143, 169, 209, 287, 289, 319, 323, 343, 361, 377, 527, 529, 559, 625, 779, 841, 899, 923, 961, 989, 1007, 1189, 1199, 1225, 1343, 1349, 1369, 1681, 1763, 1849, 1919, 2159, 2197, 2209, 2507, 2759, 2809, 2911, 3239, 3481, 3599, 3721, 3827, 3993, 4031, 4489, 4607, 5041, 5183, 5207, 5249
Offset: 1

Views

Author

Antti Karttunen, Mar 12 2021

Keywords

Comments

The term 343 is the first one that does not occur in A070160, and 625 is the second.

Crossrefs

Cf. A000010, A003415, A166374 (a subsequence after its initial terms).
Subsequence of A342008.
Cf. also A070160.

Programs

  • Mathematica
    Select[Range[5300], And[CompositeQ@ #, Mod[EulerPhi[#], Times @@ If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]] ]] == 0] &] (* Michael De Vlieger, Mar 12 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA342418(n) = ((n>1)&&!isprime(n)&&!(eulerphi(n)%A003415(n)));
Showing 1-2 of 2 results.