A070175 The smallest representative of each (bigomega(n),omega(n)) pair.
1, 2, 4, 6, 8, 12, 16, 24, 30, 32, 48, 60, 64, 96, 120, 128, 192, 210, 240, 256, 384, 420, 480, 512, 768, 840, 960, 1024, 1536, 1680, 1920, 2048, 2310, 3072, 3360, 3840, 4096, 4620, 6144, 6720, 7680, 8192, 9240, 12288, 13440, 15360, 16384, 18480, 24576
Offset: 0
Keywords
Examples
24 is a term because (bigomega(24),omega(24))=(4,2) and 24 is the smallest n for which (bigomega(n),omega(n))=(4,2).
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10186 (all terms a(n) <= A002110(54))
Programs
-
Mathematica
f[x_] := Block[{i, k, m, nn, p}, nn = Product[Prime[j], {j, x}]; Set[{k, i, p}, Range[0, 2]]; {1}~Join~Union@ Reap[Until[i > x, While[Set[m, 2^k*p] <= nn, Sow[m]; k++]; k = 0; i++; p *= Prime[i] ] ][[-1, 1]] ]; f[6] (* Michael De Vlieger, Oct 08 2024 *)
-
PARI
c_max=65; b=vector(c_max); o=vector(c_max); n=1; v=[n]; c=1; first term = 1 b[1] && o[1] are bigomega(1) && omega(1) - already initialized to 0 above. c_max is the total number of terms sought (including 1). Code exits for-loop to try new n upon the first match of a previous pair. until(c==c_max, n++; for(m=1,c, if(bigomega(n)==b[m] && omega(n)==o[m], break, else, if last previous pair checked, save term, save new unique pair if(m==c, v=concat(v,n); c++; b[c]=bigomega(n); o[c]=omega(n))))); v
Comments