A070193 Numbers k such that gcd(3k,8^k+1) = 3 but k does not divide the numerator of B(2k) (the Bernoulli numbers).
253, 1081, 1771, 2485, 2783, 3289, 4301, 4807, 5405, 5819, 7337, 7567, 7843, 9361, 10373, 10879, 11891, 12397, 12425, 13409, 13861, 14053, 14927, 15433, 17395, 17963, 18145, 18377, 18469, 19481, 19987, 20539, 20999, 22517, 23023, 24541
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
testb[n_] := Select[First/@FactorInteger[n], Mod[2n, #-1]==0&]=={}; test8[n_] := GCD[3n, PowerMod[8, n, 3n]+1]==3; Select[Range[25000], test8[ # ]&&!testb[ # ]&]
-
PARI
isA070191(k) = gcd(3*k, Mod(8, 3*k)^k + 1) == 3; isok(k) = if(!isA070191(k), 0, my(p = factor(k)[,1]); for(i = 1, #p, if(!((2*k) % (p[i]-1)), return(1))); 0); \\ Amiram Eldar, Apr 24 2025
Comments