A070237 Numbers k such that the sign of core(k)-phi(k) is not equal to 2*mu(k)^2-1, where core(k) is the squarefree part of k.
1, 420, 660, 780, 840, 1320, 1560, 4620, 5460, 7140, 7980, 8580, 9240, 9660, 10920, 11220, 12012, 12180, 12540, 13020, 13260, 14280, 14820, 15180, 15540, 15708, 15960, 17160, 17220, 17556, 17940, 18060, 18564, 19140, 19320, 19380, 19740
Offset: 1
Links
- Frank M Jackson, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
core[n_] := Module[{m, fac=Select[FactorInteger[n], OddQ[#[[2]]] &]}, If[! SquareFreeQ[n],Times@@Table[fac[[m]][[1]], {m, Length[fac]}], n]]; checkQ[n_] := Module[{a=Abs[Sign[core[n]-EulerPhi[n]]-2*MoebiusMu[n]^2+1]}, If[a>0, True, False]]; Select[Range[25000], checkQ] (* Frank M Jackson, Jun 22 2017 *)
-
PARI
for(n=1,25000,if(abs(sign(core(n)-eulerphi(n))-2*moebius(n)^2+1)>0,print1(n,",")))
-
PARI
is(k) = {my(f = factor(k)); (core(f) > eulerphi(f)) != issquarefree(f);} \\ Amiram Eldar, Nov 21 2024
Formula
a(n) = C*n + O(n), with C a constant conjectured to be a(2) = 420.
Extensions
Comment and Pari code corrected by Chris Boyd, Mar 08 2014
Comments