cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070247 Palindromic primes with digit sum 5.

Original entry on oeis.org

5, 131, 10301, 1003001, 100030001, 100111001, 101000010000101, 10000010101000001, 101000000010000000101, 110000000010000000011, 10000000000300000000001, 10000100000100000100001, 100000100000010000001000001, 10000000000000300000000000001, 10000000001000100010000000001
Offset: 1

Views

Author

Amarnath Murthy, May 05 2002

Keywords

Comments

It is conjectured that are just 3 palindromic primes with digit sum 2, namely 2, 11 and 101. If any others exist, they must be of the form 10^(2^k) + 1 with k > 14.
From Jeppe Stig Nielsen, Aug 30 2025: (Start)
It is now known that any additional primes 10^(2^k) + 1 must have k >= 31.
Digit sum 3 yields only one prime, 3, a palindrome in a vacuous way.
Digit sum 4 leads to primes (A062339), but such numbers can never be palindromes. Proof: Let w be any palindrome with digit sum 4. So w = 10^a + 10^b + 10^c + 10^d with a >= b >= c >= d >= 0. But then 10^c + 10^d is a nontrivial divisor of w, showing that w is not prime.
You may have come here searching for the subsequence 5, 131, 10301, 1003001, 100030001, 10000000000300000000001, ... where the largest digit exceeds 1. See A171376 and A100028 for information on them.
(End)

Crossrefs

Programs

  • Mathematica
    Do[p = Join[ IntegerDigits[n, 4], Reverse[ Drop[ IntegerDigits[n, 4], -1]]]; q = Plus @@ p; If[q == 5 && PrimeQ[ FromDigits[p]] && q == 5, Print[ FromDigits[p]]], {n, 1, 4 10^8}] (* this coding will not pick up the first entry *)
  • PARI
    for(i=0,50,for(j=0,i,p=10^(2*i)+10^(i+j)+10^i+10^(i-j)+1;isprime(p)&&print1(p,", "))) \\ Jeppe Stig Nielsen, Aug 30 2025

Extensions

Edited by Robert G. Wilson v, May 15 2002
More terms from Chai Wah Wu, Nov 25 2015