A070248
Palindromic primes with digit sum 7.
Original entry on oeis.org
7, 151, 313, 10501, 11311, 30103, 1201021, 3001003, 100050001, 100131001, 101030101, 110111011, 111010111, 10000500001, 1100011100011, 1100101010011, 100020010020001
Offset: 1
-
Do[p = Join[ IntegerDigits[n], Reverse[ Drop[ IntegerDigits[n], -1]]]; q = Plus @@ p; If[ PrimeQ[ FromDigits[p]] && q == 7, Print[ FromDigits[p]]], {n, 1, 10^7}]
A070249
Palindromic primes with digit sum 8.
Original entry on oeis.org
10601, 11411, 30203, 31013, 1022201, 1120211, 1300031, 3002003, 100060001, 103000301, 111020111, 300020003, 300101003, 10002220001, 10200200201, 10210001201, 1000030300001, 1021000001201, 1030000000301, 1101010101011
Offset: 1
-
Do[p = Join[ IntegerDigits[n], Reverse[ Drop[ IntegerDigits[n], -1]]]; q = Plus @@ p; If[ PrimeQ[ FromDigits[p]] && q == 8, Print[ FromDigits[p]]], {n, 1, 10^7}]
Select[Prime[Range[1626*10^4]],Total[IntegerDigits[#]]==8&&PalindromeQ[#]&] (* The program generates the first 13 terms of the sequence. *) (* Harvey P. Dale, Jul 18 2022 *)
A070250
Palindromic primes with digit sum 10.
Original entry on oeis.org
181, 12421, 30403, 1008001, 1114111, 1212121, 100161001, 100404001, 101060101, 101141101, 102040201, 102202201, 104000401, 130020031, 140000041, 10001610001, 10013031001, 10100600101, 10102220101, 10130003101
Offset: 1
-
Do[p = IntegerDigits[ Prime[n]]; If[ Plus @@ p == 10 && Reverse[p] == p, Print[ Prime[n]]], {n, 1, 10^10}]
Select[Prime[Range[4607*10^5]],PalindromeQ[#]&&Total[IntegerDigits[#]]==10&] (* Harvey P. Dale, May 28 2023 *)
A070831
Palindromic primes with digit sum = 11.
Original entry on oeis.org
191, 353, 13331, 1123211, 1221221, 1303031, 1311131, 3103013, 110232011, 111050111, 112030211, 112111211, 121111121, 130030031, 301111103, 10000900001, 10002520001, 10013131001, 10111311101, 10301110301
Offset: 1
-
Do[p = Join[ IntegerDigits[n], Reverse[ Drop[ IntegerDigits[n], -1]]]; q = Plus @@ p; If[ PrimeQ[ FromDigits[p]] && q == 11, Print[ FromDigits[p]]], {n, 1, 10^6}]
A344424
Numbers k such that A344423(k) is prime.
Original entry on oeis.org
3, 54, 58, 64, 70, 253, 438, 4255, 8770
Offset: 1
A344423(3) = 100111001 is prime, so 3 is a term of the sequence.
Showing 1-5 of 5 results.
Comments