A109184
Palindromic primes with digit sum 20.
Original entry on oeis.org
929, 16661, 17471, 36263, 70607, 72227, 73037, 91019, 1074701, 1082801, 1180811, 1262621, 1328231, 1360631, 1508051, 1532351, 1630361, 1712171, 1802081, 3160613, 3218123, 7014107, 7300037, 9002009, 102383201, 102707201, 103282301
Offset: 1
A109185
Palindromic primes with digit sum = 40.
Original entry on oeis.org
97879, 98689, 1878781, 1968691, 1976791, 1984891, 3768673, 3784873, 3792973, 3858583, 3948493, 3964693, 7278727, 7392937, 7466647, 7564657, 7654567, 7662667, 7850587, 7916197, 9078709, 9446449, 9470749, 9626269, 9634369
Offset: 1
-
Select[Prime@ Range[9000, 10^6], And[# == Reverse@ #, Total@ # == 40] &@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 18 2015 *)
-
isok(n) = isprime(n) && (d=digits(n)) && (Vecrev(d)==d) && (sumdigits(n)==40); \\ Michel Marcus, Dec 18 2015
A109207
Palindromic primes with digit sum = 50.
Original entry on oeis.org
3998993, 7696967, 7778777, 7794977, 7868687, 7884887, 7958597, 9586859, 9758579, 9782879, 9938399, 138989831, 139969931, 148888841, 148969841, 157888751, 159929951, 166888661, 167787761, 168929861, 169666961, 174989471
Offset: 1
-
Do[p=Join[IntegerDigits[n], Reverse[Drop[IntegerDigits[n], -1]]]; q=Plus@@p; If[PrimeQ[FromDigits[p]]&&q==50, Print[FromDigits[p]]], {n, 1, 10^7}] (* Vincenzo Librandi, Dec 18 2015 *)
Select[Prime@ Range[10^7], And[# == Reverse@ #, Total@ # == 50] &@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 18 2015 *)
-
isok(n) = isprime(n) && (d=digits(n)) && (Vecrev(d)==d) && (sumdigits(n)==50); \\ Michel Marcus, Dec 18 2015
Showing 1-3 of 3 results.
Comments