A109185
Palindromic primes with digit sum = 40.
Original entry on oeis.org
97879, 98689, 1878781, 1968691, 1976791, 1984891, 3768673, 3784873, 3792973, 3858583, 3948493, 3964693, 7278727, 7392937, 7466647, 7564657, 7654567, 7662667, 7850587, 7916197, 9078709, 9446449, 9470749, 9626269, 9634369
Offset: 1
-
Select[Prime@ Range[9000, 10^6], And[# == Reverse@ #, Total@ # == 40] &@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 18 2015 *)
-
isok(n) = isprime(n) && (d=digits(n)) && (Vecrev(d)==d) && (sumdigits(n)==40); \\ Michel Marcus, Dec 18 2015
A109207
Palindromic primes with digit sum = 50.
Original entry on oeis.org
3998993, 7696967, 7778777, 7794977, 7868687, 7884887, 7958597, 9586859, 9758579, 9782879, 9938399, 138989831, 139969931, 148888841, 148969841, 157888751, 159929951, 166888661, 167787761, 168929861, 169666961, 174989471
Offset: 1
-
Do[p=Join[IntegerDigits[n], Reverse[Drop[IntegerDigits[n], -1]]]; q=Plus@@p; If[PrimeQ[FromDigits[p]]&&q==50, Print[FromDigits[p]]], {n, 1, 10^7}] (* Vincenzo Librandi, Dec 18 2015 *)
Select[Prime@ Range[10^7], And[# == Reverse@ #, Total@ # == 50] &@ IntegerDigits@ # &] (* Michael De Vlieger, Dec 18 2015 *)
-
isok(n) = isprime(n) && (d=digits(n)) && (Vecrev(d)==d) && (sumdigits(n)==50); \\ Michel Marcus, Dec 18 2015
Showing 1-2 of 2 results.
Comments