A070247
Palindromic primes with digit sum 5.
Original entry on oeis.org
5, 131, 10301, 1003001, 100030001, 100111001, 101000010000101, 10000010101000001, 101000000010000000101, 110000000010000000011, 10000000000300000000001, 10000100000100000100001, 100000100000010000001000001, 10000000000000300000000000001, 10000000001000100010000000001
Offset: 1
-
Do[p = Join[ IntegerDigits[n, 4], Reverse[ Drop[ IntegerDigits[n, 4], -1]]]; q = Plus @@ p; If[q == 5 && PrimeQ[ FromDigits[p]] && q == 5, Print[ FromDigits[p]]], {n, 1, 4 10^8}] (* this coding will not pick up the first entry *)
-
for(i=0,50,for(j=0,i,p=10^(2*i)+10^(i+j)+10^i+10^(i-j)+1;isprime(p)&&print1(p,", "))) \\ Jeppe Stig Nielsen, Aug 30 2025
A070249
Palindromic primes with digit sum 8.
Original entry on oeis.org
10601, 11411, 30203, 31013, 1022201, 1120211, 1300031, 3002003, 100060001, 103000301, 111020111, 300020003, 300101003, 10002220001, 10200200201, 10210001201, 1000030300001, 1021000001201, 1030000000301, 1101010101011
Offset: 1
-
Do[p = Join[ IntegerDigits[n], Reverse[ Drop[ IntegerDigits[n], -1]]]; q = Plus @@ p; If[ PrimeQ[ FromDigits[p]] && q == 8, Print[ FromDigits[p]]], {n, 1, 10^7}]
Select[Prime[Range[1626*10^4]],Total[IntegerDigits[#]]==8&&PalindromeQ[#]&] (* The program generates the first 13 terms of the sequence. *) (* Harvey P. Dale, Jul 18 2022 *)
A070250
Palindromic primes with digit sum 10.
Original entry on oeis.org
181, 12421, 30403, 1008001, 1114111, 1212121, 100161001, 100404001, 101060101, 101141101, 102040201, 102202201, 104000401, 130020031, 140000041, 10001610001, 10013031001, 10100600101, 10102220101, 10130003101
Offset: 1
-
Do[p = IntegerDigits[ Prime[n]]; If[ Plus @@ p == 10 && Reverse[p] == p, Print[ Prime[n]]], {n, 1, 10^10}]
Select[Prime[Range[4607*10^5]],PalindromeQ[#]&&Total[IntegerDigits[#]]==10&] (* Harvey P. Dale, May 28 2023 *)
A070831
Palindromic primes with digit sum = 11.
Original entry on oeis.org
191, 353, 13331, 1123211, 1221221, 1303031, 1311131, 3103013, 110232011, 111050111, 112030211, 112111211, 121111121, 130030031, 301111103, 10000900001, 10002520001, 10013131001, 10111311101, 10301110301
Offset: 1
-
Do[p = Join[ IntegerDigits[n], Reverse[ Drop[ IntegerDigits[n], -1]]]; q = Plus @@ p; If[ PrimeQ[ FromDigits[p]] && q == 11, Print[ FromDigits[p]]], {n, 1, 10^6}]
Showing 1-4 of 4 results.
Comments