A070251 Unrelated-factorial numbers: product of numbers unrelated to n (numbers which have a common divisor with n but do not divide n).
1, 1, 1, 1, 1, 4, 1, 6, 6, 192, 1, 720, 1, 23040, 6480, 10080, 1, 12902400, 1, 34836480, 2449440, 1857945600, 1, 50295168000, 3000, 980995276800, 9797760, 9564703948800, 1, 1518492398911488000, 1, 41845579776000, 1571364748800
Offset: 1
Keywords
Examples
Table of a(n) for composite n <= 30, showing prime power decomposition by listing exponents of primes shown in the column heads: n a(n) 2 3 5 7 11 13 --------------------------------------------- 6 4 2 8 6 1, 1 9 6 1, 1 10 192 6, 1 12 720 4, 2, 1 14 23040 9, 2, 1 15 6480 4, 4, 1 16 10080 5, 2, 1, 1 18 12902400 13, 2, 2, 1 20 34836480 12, 5, 1, 1 21 2449440 5, 7, 1, 1 22 1857945600 17, 4, 2, 1 24 50295168000 10, 6, 3, 2, 1 25 3000 3, 1, 3 26 980995276800 21, 5, 2, 1, 1 27 9797760 7, 7, 1, 1 28 9564703948800 19, 6, 2, 1, 1, 1 30 1518492398911488000 22,10, 3, 3, 1, 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..629
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..10000, where gold represents proper prime power n, green represents squarefree composite n, bright green represents n in A002110, blue represents n in A332785, and purple represents powerful n that are not prime powers.
- Michael De Vlieger, Plot p^m | a(n) at (x,y) = (n, pi(p)), n = 1..2048, with a color function showing m = 1 in black, m = 2 in red, ..., maximum m in magenta.
Programs
-
Maple
A070251 := proc(n) local i; remove(k->igcd(n,k)=1,{$1..n}); numtheory[divisors](n); mul(i, i = %% minus % ) end: # Peter Luschny, Oct 11 2011
-
Mathematica
a[n_] := Times @@ Complement[Range[n], Divisors[n]]/Times @@ Select[ Range[n], CoprimeQ[n, #]&]; Array[a, 33] (* Jean-François Alcover, Jun 03 2019 *)
Formula
From Michael De Vlieger, Jan 15 2025: (Start)
Let S(n) = { k < n : 1 < gcd(k,n) < k } = row n of A133995 for composite n > 4.
a(n) = product of S(n).
Extensions
More terms from Vladeta Jovovic, May 06 2002
Comments