A070263 Triangle T(n,k), n >= 0, 1 <= k <= 2^n, read by rows, giving minimal distance-sum of any set of k binary vectors of length n.
0, 0, 1, 0, 1, 4, 8, 0, 1, 4, 8, 16, 25, 36, 48, 0, 1, 4, 8, 16, 25, 36, 48, 68, 89, 112, 136, 164, 193, 224, 256, 0, 1, 4, 8, 16, 25, 36, 48, 68, 89, 112, 136, 164, 193, 224, 256, 304, 353, 404, 456, 512, 569, 628, 688, 756, 825, 896, 968, 1044, 1121, 1200, 1280
Offset: 0
Examples
0; 0,1; 0,1,4,8; 0,1,4,8,16,25,36,48; 0,1,4,8,16,25,36,48,68,89,112,...
Links
- A. Kündgen, Minimum average distance subsets in the Hamming cube, Discrete Math., 249 (2002), 149-165.
Crossrefs
Cf. A022560.
Formula
Rows seem to converge to expansion of (1/(1-x)^2) * Sum_{k>=0} 2^k*t/(1-t^2), where t = x^2^k. - Ralf Stephan, Sep 12 2003
Extensions
More terms from Sean A. Irvine, Jun 06 2024
Comments