cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A353243 Indices of records of A070266.

Original entry on oeis.org

1, 2, 3, 4, 10, 11, 18, 27, 30, 32, 43, 69, 70, 264, 1409, 3027, 7471, 8946, 10576, 12595, 14034, 22849, 37124, 70083, 107868, 469850
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2022

Keywords

Comments

The corresponding record values are in A353244.

Crossrefs

Programs

  • Mathematica
    m = Table[Max[ContinuedFraction[HarmonicNumber[n]]], {n, 1, 10^4}]; Map[FirstPosition[m, #][[1]] &, Union@FoldList[Max, m]]
  • Python
    from itertools import count, islice
    from fractions import Fraction
    from sympy.ntheory.continued_fraction import continued_fraction
    def A353243_gen(): # generator of terms
        k, c = Fraction(), 0
        for n in count(1):
            k += Fraction(1,n)
            if c < (m := max(continued_fraction(k))):
                c = m
                yield n
    A353243_list = list(islice(A353243_gen(),10)) # Chai Wah Wu, Apr 08 2022

Formula

A070266(a(n)) = A353244(n).

A353244 Record values of A070266.

Original entry on oeis.org

1, 2, 5, 12, 13, 50, 61, 68, 198, 1090, 1812, 2362, 32334, 1517757, 4150055, 8850618, 10459960, 34693154, 80385407, 277184250, 316848842, 426258508, 2150821469, 2901738400, 49091889811, 331178405563
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2022

Keywords

Comments

The corresponding indices are in A353243.

Crossrefs

Programs

  • Mathematica
    Union @ FoldList[Max, Table[Max[ContinuedFraction[HarmonicNumber[n]]], {n, 1, 10^4}]]
  • Python
    from itertools import count, islice
    from fractions import Fraction
    from sympy.ntheory.continued_fraction import continued_fraction
    def A353244_gen(): # generator of terms
        k, c = Fraction(), 0
        for n in count(1):
            k += Fraction(1,n)
            if c < (m := max(continued_fraction(k))):
                yield (c := m)
    A353244_list = list(islice(A353244_gen(),10)) # Chai Wah Wu, Apr 08 2022

Formula

a(n) = A070266(A353243(n)).

A070267 Maximum element in the simple continued fraction expansion of e(n) = 1+1/2!+1/3!+...+1/n!.

Original entry on oeis.org

1, 2, 2, 3, 8, 5, 4, 14, 6, 29, 10, 16, 20, 18, 42, 59, 13, 14, 59, 35, 31, 184, 24, 65, 42, 64, 401, 71, 26, 24, 36, 31, 52, 187, 28, 41, 128, 177, 3041, 249, 315, 162, 118, 36, 101, 135, 86, 70, 194, 104, 274, 62, 2515, 305, 68, 59, 49, 88, 359, 280, 100, 702, 52
Offset: 1

Views

Author

Benoit Cloitre, May 09 2002

Keywords

Examples

			The simple continued fraction expansion of e(10) is [1, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 11, 1, 1, 29, 1, 1, 2], hence a(10) = 29.
		

Crossrefs

Programs

  • Mathematica
    Table[ Max[ ContinuedFraction[ Sum[1/i!, {i, 1, n}]]], {n, 1, 65}]
Showing 1-3 of 3 results.