A070558 Number of two-rowed partitions of length 5.
1, 1, 3, 5, 10, 16, 28, 42, 68, 100, 151, 215, 312, 432, 605, 821, 1117, 1485, 1977, 2581, 3371, 4335, 5566, 7060, 8938, 11196, 13994, 17338, 21426, 26280, 32152, 39074, 47369, 57093, 68637, 82097, 97955, 116339, 137849, 162665, 191507
Offset: 0
Keywords
Links
- G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
- L. Colmenarejo, Combinatorics on several families of Kronecker coefficients related to plane partitions, arXiv:1604.00803 [math.CO], 2016. See Table 1 p. 5.
Programs
-
Maple
a:= n-> (Matrix(35, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -1, -3, -2, -2, 3, 7, 5, 1, -4, -8, -11, -1, 5, 9, 9, 5, -1, -11, -8, -4, 1, 5, 7, 3, -2, -2, -3, -1, 0, 2, 1, -1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
-
Mathematica
m = 5; n = 45; gf = 1/((1-x)*Product[1-x^k, {k, 2, m}]^2*(1-x^(m+1))) + O[x]^n; CoefficientList[gf, x] (* Jean-François Alcover, Jul 17 2015 *)
Formula
G.f.: 1/((1-x)*((1-x^2)*...*(1-x^m))^2*(1-x^(m+1))) for m = 5.