A070559 Number of two-rowed partitions of length 6.
1, 1, 3, 5, 10, 16, 29, 44, 72, 108, 166, 241, 357, 504, 720, 998, 1386, 1882, 2559, 3413, 4551, 5981, 7842, 10162, 13138, 16811, 21454, 27150, 34251, 42898, 53570, 66464, 82221, 101146, 124057, 151404, 184261, 223235, 269723, 324578
Offset: 0
Keywords
Links
- G. E. Andrews, MacMahon's Partition Analysis II: Fundamental Theorems, Annals Combinatorics, 4 (2000), 327-338.
Programs
-
Maple
a:= n-> (Matrix(48, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -1, -3, -1, -2, 0, 5, 6, 5, 1, -5, -11, -9, -7, 2, 9, 15, 16, 4, -5, -13, -16, -13, -5, 4, 16, 15, 9, 2, -7, -9, -11, -5, 1, 5, 6, 5, 0, -2, -1, -3, -1, 0, 2, 1, -1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..39); # Alois P. Heinz, Jul 31 2008
-
Mathematica
m = 6; n = 40; gf = 1/((1-x)*Product[1-x^k, {k, 2, m}]^2*(1-x^(m+1))) + O[x]^n; CoefficientList[gf, x] (* Jean-François Alcover, Jul 17 2015 *)
Formula
G.f.: 1/((1-x)*((1-x^2)*...*(1-x^m))^2*(1-x^(m+1))) for m = 6.