cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070559 Number of two-rowed partitions of length 6.

Original entry on oeis.org

1, 1, 3, 5, 10, 16, 29, 44, 72, 108, 166, 241, 357, 504, 720, 998, 1386, 1882, 2559, 3413, 4551, 5981, 7842, 10162, 13138, 16811, 21454, 27150, 34251, 42898, 53570, 66464, 82221, 101146, 124057, 151404, 184261, 223235, 269723, 324578
Offset: 0

Views

Author

N. J. A. Sloane, May 07 2002

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (Matrix(48, (i,j)-> if (i=j-1) then 1 elif j=1 then [1, 2, 0, -1, -3, -1, -2, 0, 5, 6, 5, 1, -5, -11, -9, -7, 2, 9, 15, 16, 4, -5, -13, -16, -13, -5, 4, 16, 15, 9, 2, -7, -9, -11, -5, 1, 5, 6, 5, 0, -2, -1, -3, -1, 0, 2, 1, -1][i] else 0 fi)^n)[1,1]: seq(a(n), n=0..39); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    m = 6; n = 40; gf = 1/((1-x)*Product[1-x^k, {k, 2, m}]^2*(1-x^(m+1))) + O[x]^n; CoefficientList[gf, x] (* Jean-François Alcover, Jul 17 2015 *)

Formula

G.f.: 1/((1-x)*((1-x^2)*...*(1-x^m))^2*(1-x^(m+1))) for m = 6.