A070878 Stern's diatomic array read by rows (version 2).
1, 0, 1, 1, 0, 1, 2, 1, 1, 0, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5
Offset: 0
Examples
Triangle begins: 1,0; 1,1,0; 1,2,1,1,0; 1,3,2,3,1,2,1,1,0; ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..10000
- C. Giuli and R. Giuli, A primer on Stern's diatomic sequence, Fib. Quart., 17 (1979), 103-108, 246-248 and 318-320 (but beware errors).
- Index entries for sequences related to Stern's sequences
Crossrefs
Programs
-
Mathematica
row[1] = {1, 0}; row[n_] := row[n] = (r = row[n-1]; Riffle[r, Most[r + RotateLeft[r]]]); Flatten[ Table[row[n], {n, 1, 7}]] (* Jean-François Alcover, Nov 03 2011 *) Flatten[NestList[Riffle[#,Total/@Partition[#,2,1]]&,{1,0},6]] (* Harvey P. Dale, Dec 06 2014 *)
Formula
Each row is obtained by copying the previous row but interpolating the sums of pairs of adjacent terms. E.g. after 1 2 1 1 0 we get 1 1+2 2 2+1 1 1+1 1 1+0 0.
Extensions
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 07 2003
Comments