A070880 Consider the 2^(n-1)-1 nonempty subsets S of {1, 2, ..., n-1}; a(n) gives number of such S for which it is impossible to partition n into parts from S such that each s in S is used at least once.
0, 0, 1, 3, 10, 22, 52, 110, 234, 482, 987, 1997, 4035, 8113, 16288, 32644, 65388, 130886, 261922, 524013, 1048250, 2096752, 4193831, 8388033, 16776543, 33553621, 67107918, 134216596, 268434139, 536869354, 1073740011, 2147481510, 4294964833, 8589931699
Offset: 1
Examples
a(4)=3 because there are three different subsets S of {1,2,3} satisfying the condition: {3}, {2,3} & {1,2,3}. For the other subsets S, such as {1,2}, there is a partition of 4 which uses them all (such as 4 = 1+1+2). From _Gus Wiseman_, Sep 10 2023: (Start) The a(6) = 22 subsets: {4} {2,3} {1,2,4} {1,2,3,4} {1,2,3,4,5} {5} {2,5} {1,2,5} {1,2,3,5} {3,4} {1,3,4} {1,2,4,5} {3,5} {1,3,5} {1,3,4,5} {4,5} {1,4,5} {2,3,4,5} {2,3,4} {2,3,5} {2,4,5} {3,4,5} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100
Crossrefs
Programs
-
Mathematica
combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s], Total[Times@@@#]==n&]]; Table[Length[Select[Rest[Subsets[Range[n-1]]], combp[n,#]=={}&]],{n,7}] (* Gus Wiseman, Sep 10 2023 *)
-
Python
from sympy.utilities.iterables import partitions def A070880(n): return (1<
Chai Wah Wu, Sep 10 2023
Formula
a(n) = 2^(n-1) - A088314(n). - Charlie Neder, Feb 08 2019
a(n) = A365045(n) - 1. - Gus Wiseman, Sep 10 2023
Extensions
Edited by N. J. A. Sloane, Sep 09 2017
a(20)-a(34) from Alois P. Heinz, Feb 08 2019
Comments