A070889 Denominator of Sum_{k=1..n} mu(k)/k.
1, 2, 6, 6, 30, 15, 105, 105, 105, 210, 2310, 2310, 30030, 15015, 5005, 5005, 85085, 85085, 1616615, 1616615, 4849845, 9699690, 223092870, 223092870, 223092870, 111546435, 111546435, 111546435, 3234846615, 2156564410, 66853496710
Offset: 1
Examples
a(6) = 15 because 1 - 1/2 - 1/3 - 1/5 + 1/6 = 4/30 = 2/15.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..2370
Programs
-
Mathematica
Table[ Denominator[ Sum[ MoebiusMu[k]/k, {k, 1, n}]], {n, 1, 37}]
-
PARI
t = 0; v = []; for( n = 1, 30, t = t + moebius( n) / n; v = concat( v, denominator( t))); v
-
Python
from functools import lru_cache from sympy import harmonic @lru_cache(maxsize=None) def f(n): if n <= 1: return 1 c, j = 1, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (harmonic(j-1)-harmonic(j2-1))*f(k1) j, k1 = j2, n//j2 return c+harmonic(j-1)-harmonic(n) def A070889(n): return f(n).denominator # Chai Wah Wu, Nov 03 2023
Extensions
Edited by Robert G. Wilson v, Jun 10 2002