cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070943 Commuting elements: number of ordered pairs g, h in the group GL(2,Z_n) such that gh = hg.

Original entry on oeis.org

1, 18, 384, 1344, 11520, 6912, 96768, 92160, 303264, 207360, 1584000, 516096, 4402944, 1741824, 4423680, 6094848, 22560768, 5458752, 44323200, 15482880, 37158912, 28512000, 141064704, 35389440, 186000000, 79252992, 226748160, 130056192, 572947200, 79626240
Offset: 1

Views

Author

Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 12 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n^4*DivisorSigma[1, n]*EulerPhi[n]*Product[(1-1/p^2)*(1-1/p), {p, FactorInteger[n][[All, 1]]}]; a[1]=1; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, May 02 2013, after Eric M. Schmidt *)
  • Sage
    def A070943(n) : return Integer(n^4 * sigma(n) * euler_phi(n) * prod((1-1/p^2)*(1-1/p) for (p,m) in factor(n))) # Eric M. Schmidt, May 02 2013

Formula

a(n) = A000252(n) * A062354(n).
a(n) = n^4 * Product_{p prime, p|n} (1-1/p^2)*(1-1/p) * sigma(n)*phi(n).
From Amiram Eldar, Oct 30 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1)-1) * (p-1)^2 * (p+1) * p^(5*e-4).
Sum_{k=1..n} a(k) ~ c * n^7, where c = (1/7) * Product_{p prime} (1 - 1/p^2 - 2/p^3 + 3/p^4 - 1/p^5) = 0.07103214283... . (End)

Extensions

More terms from Benoit Cloitre, Sep 13 2003
More terms from Eric M. Schmidt, May 02 2013