cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A070959 First minimum value > 0 of the form x^3-k^2 when k > n^3.

Original entry on oeis.org

4, 4, 39, 13, 152, 28, 391, 49, 804, 76, 1439, 109, 2344, 148, 3567, 193, 5156, 244, 7159, 301, 9624, 364, 12599, 433, 16132, 508, 20271, 589, 25064, 676, 30559, 769, 36804, 868, 43847, 973, 51736, 1084, 60519, 1201, 70244, 1324, 80959, 1453, 92712
Offset: 1

Views

Author

Benoit Cloitre, May 25 2002

Keywords

Examples

			Let n=2 then n^3=8 and A070923(9)= 44, A070923(10)=25, A070923(11)=4, A070923(12)=72 so the first minimum is 4, hence a(2)=4
		

Crossrefs

Cf. A070923.

Programs

  • PARI
    for(n=1,100,s=n^3+1; while(ceil(s^(2/3))^3-s^2>ceil((s+1)^(2/3))^3-(s+1)^2,s++); print1(ceil(s^(2/3))^3-s^2,","))

Formula

Let k be the smallest integer>n^3 such that A070923(k-1)> A070923(k) and such that A070923(k) < A070923(k+1), then a(n)= A070923(k); for n>=1 a(2n-1) = 8n^3-9n^2+6n-1, a(2n)=3n^2+1.
From Chai Wah Wu, Jul 27 2020: (Start)
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n > 8.
G.f.: x*(-x^7 + x^6 + 20*x^4 - 3*x^3 + 23*x^2 + 4*x + 4)/((x - 1)^4*(x + 1)^4). (End)