A336088 k such that L(H(k,2)) = 2*L(H(k,1)) where L(x) is the number of terms in the continued fraction of x and H(k,r) = Sum_{u=1..k} 1/u^r.
28, 61, 90, 105, 121, 321, 339, 382, 408, 466, 602, 1079, 1121, 1596, 1782, 2067, 2104, 2170, 2220, 2250, 2435, 2456, 2884, 3141, 3242, 3321, 3328, 3435, 4195, 4323, 4348, 4497, 4766, 4914, 5241, 5526, 6290, 6581, 6597, 9306, 9734
Offset: 1
Keywords
Programs
-
Mathematica
c[n_, r_] := Length @ ContinuedFraction @ HarmonicNumber[n, r]; Select[Range[10^4], c[#, 2] == 2 * c[#, 1] &] (* Amiram Eldar, Oct 04 2020 *)
-
PARI
H1=H2=1;for(n=2,10000,H1=H1+1/n;H2=H2+1/n^2;if(length(contfrac(H2))==2*length(contfrac(H1)),print1(n,",")))
Comments