A071011 Numbers n such that n is a sum of 2 squares (i.e., n is in A001481(k)) and sigma(n) == 0 (mod 4).
65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905
Offset: 1
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[10^3], And[SquaresR[2, #] > 0, Divisible[DivisorSigma[1, #], 4]] &] (* Michael De Vlieger, Jul 30 2017 *)
-
PARI
for(n=1,1000,if(1-sign(sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1))))+sigma(n)%4==0,print1(n,",")))
-
Python
from math import prod from itertools import count, islice from sympy import factorint def A071011_gen(): # generator of terms return filter(lambda n:(lambda f:all(p & 3 != 3 or e & 1 == 0 for p, e in f) and prod((p**(e+1)-1)//(p-1) & 3 for p, e in f) & 3 == 0)(factorint(n).items()),count(0)) A071011_list = list(islice(A071011_gen(),30)) # Chai Wah Wu, Jun 27 2022
Comments