cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071011 Numbers n such that n is a sum of 2 squares (i.e., n is in A001481(k)) and sigma(n) == 0 (mod 4).

Original entry on oeis.org

65, 85, 125, 130, 145, 170, 185, 205, 221, 250, 260, 265, 290, 305, 340, 365, 370, 377, 410, 442, 445, 481, 485, 493, 500, 505, 520, 530, 533, 545, 565, 580, 585, 610, 629, 680, 685, 689, 697, 730, 740, 745, 754, 765, 785, 793, 820, 865, 884, 890, 901, 905
Offset: 1

Views

Author

Benoit Cloitre, May 19 2002

Keywords

Comments

It is conjectured that if m is not a sum of 2 squares (i.e., m is in A022544(k)) sigma(m) == 0 (mod 4).

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], And[SquaresR[2, #] > 0, Divisible[DivisorSigma[1, #], 4]] &] (* Michael De Vlieger, Jul 30 2017 *)
  • PARI
    for(n=1,1000,if(1-sign(sum(i=0,n,sum(j=0,i,if(i^2+j^2-n,0,1))))+sigma(n)%4==0,print1(n,",")))
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A071011_gen(): # generator of terms
        return filter(lambda n:(lambda f:all(p & 3 != 3 or e & 1 == 0 for p, e in f) and prod((p**(e+1)-1)//(p-1) & 3 for p, e in f) & 3 == 0)(factorint(n).items()),count(0))
    A071011_list = list(islice(A071011_gen(),30)) # Chai Wah Wu, Jun 27 2022