A071055 Number of 0's in n-th row of triangle in A071038.
0, 0, 2, 0, 2, 2, 6, 0, 2, 2, 6, 2, 6, 6, 14, 0, 2, 2, 6, 2, 6, 6, 14, 2, 6, 6, 14, 6, 14, 14, 30, 0, 2, 2, 6, 2, 6, 6, 14, 2, 6, 6, 14, 6, 14, 14, 30, 2, 6, 6, 14, 6, 14, 14, 30, 6, 14, 14, 30, 14, 30, 30, 62, 0, 2, 2, 6, 2, 6, 6, 14, 2, 6, 6, 14, 6, 14, 14, 30, 2, 6, 6, 14, 6
Offset: 0
Keywords
Examples
From _Omar E. Pol_, Mar 02 2015: (Start) Also, written as an irregular triangle in which the row lengths are the powers of 2, the sequence begins: 0; 0,2; 0,2,2,6; 0,2,2,6,2,6,6,14; 0,2,2,6,2,6,6,14,2,6,6,14,6,14,14,30; 0,2,2,6,2,6,6,14,2,6,6,14,6,14,14,30,2,6,6,14,6,14,14,30,6,14,14,30,14,30,30,62; ... It appears that the right border gives the nonnegative terms of A000918. It appears that the row sums give A056182. (End)
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; Chapter 3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Rule 182
- Index entries for sequences related to cellular automata
Crossrefs
Cf. A071042.
Programs
-
Mathematica
Count[#, n_ /; n == 0] & /@ Flatten[CellularAutomaton[182, {{1}, 0}, {{#}}] & /@ Range[0, 100], 1] (* Michael De Vlieger, Mar 02 2015 *)
-
PARI
A011371(n)=my(s); while(n>>=1, s+=n); s a(n)=my(t=A011371(n)); sum(k=1,n,(A011371(k)+A011371(n-k)==t)!=(A011371(k-1)+A011371(n-k+1)==t)) \\ Charles R Greathouse IV, Mar 02 2015
Formula
a(n)=b(n+1), with b(0)=0, b(2n)=b(n), b(2n+1)=2b(n)+2-2[n==0] (conjectured). - Ralf Stephan, Mar 05 2004
a(n) = pext(n, n + 1) (conjectured) where pext is the "parallel bits extract" instruction of the x86 CPU; pext(x, mask) extracts bits from x at the bit locations specified by mask to contiguous low bits. - Falk Hüffner, Jul 26 2019
Comments