cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071059 Number of ways of pairing even numbers in the range 1 to n with odd numbers in the range n+1 to 2n such that each pair sums to a prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 6, 4, 7, 6, 11, 11, 53, 53, 181, 171, 939, 925, 4432, 4545, 15811, 15583, 67891, 68193, 434963, 388975, 2718150, 3113343, 21580655, 18425145, 92370364, 94887088, 564878656, 572364768, 4545704064, 4092294083, 36878092180, 36363930614
Offset: 1

Views

Author

T. D. Noe, May 25 2002

Keywords

Examples

			a(6)=2 because there are two ways: 2+9, 4+7, 6+11 and 2+11, 4+9, 6+7.
		

Crossrefs

The product of this sequence and A071058 gives A070897.

Programs

  • Maple
    f:= proc(n) local m;
      m:= floor(n/2);
     LinearAlgebra:-Permanent(Matrix(m,m,
        (i,j) -> `if`(isprime((i+j-2)*2 + n + 3 + (n mod 2)),1,0)))
    end proc:
    f(1):= 1:
    map(f, [$1..40]); # Robert Israel, Sep 21 2023
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1, Module[{s1, s2, s3, s4, i, ik, km},
    s1 = Select[Flatten[Outer[List, Range[2, n, 2], Range[2n-1, n+1, -2]], 1], PrimeQ[Total[#]]&];
    s2 = SplitBy[s1, First];
    km = Length[s2];
    ik = Table[{i[k], 1, Length[s2[[k]]]}, {k, 1, km}];
    s3 = Table[Table[s2[[k, i[k]]], {k, 1, km}], Evaluate[Sequence @@ ik]] // Flatten[#, km - 1]&;
    s4 = Select[s3, Length[Union[Flatten[#]]] == 2km&];
    s4 // Length]];
    Table[Print[n, " ", a[n]]; a[n], {n, 1, 20}] (* Jean-François Alcover, Aug 10 2022 *)
  • PARI
    a(n)=matpermanent(matrix(n\2,n\2,i,j,isprime((i+j-2)*2+n+3+(n%2)))); \\ Martin Fuller, Sep 21 2023

Formula

a(2n) = A071058(2n).

Extensions

More terms from David W. Wilson, May 27 2002
a(31)-a(37) from Donovan Johnson, Aug 12 2010