cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071060 Largest n-digit prime with only prime digits.

Original entry on oeis.org

7, 73, 773, 7757, 77773, 777737, 7777753, 77777377, 777777773, 7777777577, 77777777573, 777777777773, 7777777777573, 77777777777753, 777777777777773, 7777777777777753, 77777777777775557, 777777777777777737, 7777777777777777577, 77777777777777777257, 777777777777777777773, 7777777777777777773533, 77777777777777777775353
Offset: 1

Views

Author

Rick L. Shepherd, May 26 2002

Keywords

Comments

Terms a(5) through a(23) have been certified prime with Primo.

Crossrefs

Cf. A069837.

Programs

  • PARI
    genit(nstrt=1,cownt=23)={my(arr=List());for(n=nstrt, nstrt+cownt, my(cand=0); for(i=1,n,cand=10*cand+7); if(ispseudoprime(cand)==1, listput(arr,cand);next); for(j=1,+oo,cand=precprime(cand-1); my(v=digits(cand), pass=1); for(ptr=1, #v, my(q=v[ptr]); if(q==2||q==3||q==5||q==7,next);pass=0;break);if(pass>0,break)); listput(arr,cand)); Vec(arr)} \\ Bill McEachen, Apr 29 2023
  • Python
    from sympy import isprime
    from itertools import product
    def a(n): return next(t for t in (int("".join(p)+e) for p in product("7532", repeat=n-1) for e in "73") if isprime(t))
    print([a(n) for n in range(1, 24)]) # Michael S. Branicky, Apr 29 2023
    

Formula

Conjecture: a(n) ~ floor((7/9) * 10^n). - Bill McEachen, Apr 07 2023