cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071143 Numbers n such that (i) the sum of the distinct primes dividing n is divisible by the largest prime dividing n and (ii) n has exactly 4 distinct prime factors and (iii) n is squarefree.

Original entry on oeis.org

3135, 6279, 8855, 10695, 11571, 16095, 17255, 17391, 20615, 20735, 26691, 28083, 31031, 36519, 41151, 41615, 45695, 46655, 47859, 48495, 50439, 54131, 56823, 57239, 59295, 61295, 66215, 72611, 76055, 76479, 80135, 84135, 88595, 89999, 90951, 93651, 94611
Offset: 1

Views

Author

Labos Elemer, May 13 2002

Keywords

Examples

			n = pqrs, p<q<r<s, p+q+r+s = ks; n = 6279 = 3*7*13*23, sum = 3+7+13+23 = 2*23
		

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sb[x_] := Apply[Plus, ba[x]] ma[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] amo[x_] := Abs[MoebiusMu[x]] Do[s=sb[n]/ma[n]; If[IntegerQ[s]&&Equal[lf[n], 4]&& !Equal[amo[n], 0], Print[{n, ba[n]}]], {n, 2, 1000000}]
    s = {}; Do[Length[f=FactorInteger@n] == 4 && Max[(t = Transpose@f)[[2]]] == 1 && Mod[Plus @@ t[[1]], t[[1,-1]]] == 0 && AppendTo[s,n], {n, 3, 10^6, 2}]; s (* 12 times faster, Giovanni Resta, Apr 10 2013 *)
    sdpQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},Divisible[Total[fi], Last[ fi]] &&Length[fi]==4&&SquareFreeQ[n]]; Select[Range[100000],sdpQ] (* Harvey P. Dale, May 01 2018 *)

Formula

A008472(n)/A006530(n) is an integer; A001221(n) = 4, n is squarefree.

Extensions

Definition clarified by Harvey P. Dale, May 01 2018