A071211 Triangular array T(n,k) read by rows, giving number of labeled free trees such that the root is smaller than all its children, with respect to the number n of vertices and to the label k of the root.
1, 3, 1, 16, 8, 3, 125, 75, 40, 16, 1296, 864, 540, 300, 125, 16807, 12005, 8232, 5292, 3024, 1296, 262144, 196608, 143360, 100352, 65856, 38416, 16807, 4782969, 3720087, 2834352, 2099520, 1492992, 995328, 589824, 262144, 100000000
Offset: 1
References
- C. Chauve, S. Dulucq and O. Guibert, Enumeration of some labeled trees, Proceedings of FPSAC/SFCA 2000 (Moscow), Springer, pp. 146-157.
Programs
-
Maple
T:= (n, k)-> (n-k)*(n+1)^(n-k-1)*n^(k-1): seq(seq(T(n, k), k=0..n-1), n=1..10);
-
PARI
tabl(nn) = {for (n=1, nn, for (k=0, n-1, print1((n-k)*(n+1)^(n-k-1)*n^(k-1), ", ");); print(););} \\ Michel Marcus, Jun 27 2013
Formula
T(n,k) = (n-k)*(n+1)^(n-k-1)*n^(k-1).