cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071220 Numbers n such that prime(n) + prime(n+1) is a cube.

Original entry on oeis.org

2, 28, 1332, 3928, 16886, 157576, 192181, 369440, 378904, 438814, 504718, 539873, 847252, 1291597, 1708511, 1837979, 3416685, 3914319, 5739049, 6021420, 7370101, 7634355, 8608315, 9660008, 10378270, 14797144, 15423070, 18450693
Offset: 1

Views

Author

Labos Elemer, May 17 2002

Keywords

Comments

The corresponding primes are in A061308; n^3 is a sum of two successive primes in A074925.
Prime(n)+ Prime(n+1) is a square in A064397; n^2 is a sum of two successive primes in A074924;

Examples

			28 is in the list because prime(28)+prime(29) = 107+109 =216 = 6^3.
n=1291597: prime(1291597)+prime(1291598) = 344*344*344.
		

Crossrefs

Programs

  • Mathematica
    PrevPrim[n_] := Block[{k = n - 1}, While[ !PrimeQ[k], k-- ]; k]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; Do[ If[ n^3 == PrevPrim[Floor[(n^3)/2]] + NextPrim[Floor[(n^3)/2]], Print[ PrimePi[ Floor[(n^3)/2]]]], {n, 2, 10^4}]
    Flatten[Position[Total/@Partition[Prime[Range[20000000]],2,1],?(IntegerQ[ Surd[ #,3]]&)]] (* _Harvey P. Dale, May 28 2014 *)
  • Python
    from _future_ import division
    from sympy import isprime, prevprime, nextprime, primepi
    A071220_list, i = [], 2
    while i < 10**6:
        n = i**3
        m = n//2
        if not isprime(m) and prevprime(m) + nextprime(m) == n:
            A071220_list.append(primepi(m))
        i += 1 # Chai Wah Wu, May 31 2017

Formula

A001043(x)=m^3 for some m; if p(x+1)+p(x) is a cube, then x is here.
a(n) = primepi(A061308(n)). - Michel Marcus, Oct 24 2014

Extensions

Edited and extended by Robert G. Wilson v, Oct 07 2002