cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A071264 Expansion of (1+x*C^4)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

Original entry on oeis.org

1, 4, 16, 63, 244, 934, 3549, 13428, 50694, 191216, 721259, 2722073, 10282610, 38886330, 147243585, 558279000, 2119599270, 8058312360, 30677134380, 116937340494, 446317079712, 1705563385196, 6525404350306, 24994411455928
Offset: 0

Views

Author

N. J. A. Sloane, Jun 06 2002

Keywords

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 30);
    p:= func< x | (1 -7*x +14*x^2 -6*x^3 -3*x^4 -(1 -5*x +6*x^2 -x^4)*Sqrt(1-4*x))/2 >;
    Coefficients(R!( p(x) )); // G. C. Greubel, Sep 12 2024
    
  • Maple
    g := (1-sqrt(1-4*x))/2/x ;
    (1+x*g^4)*g^3 ;
    taylor(%,x=0,40) ;
    gfun[seriestolist](%) ; # R. J. Mathar, Aug 14 2024
  • Mathematica
    CoefficientList[Series[(1-7*x+14*x^2-6*x^3-3*x^4 -(1-5*x+6*x^2-x^4 )*Sqrt[1-4*x])/(2*x^6), {x,0,30}], x] (* G. C. Greubel, Sep 12 2024 *)
  • SageMath
    def p(x): return (1-7*x+14*x^2-6*x^3-3*x^4 -(1-5*x+6*x^2 -x^4)*sqrt(1-4*x))/(2*x^6)
    def A071264_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( p(x) ).list()
    A071264_list(30) # G. C. Greubel, Sep 12 2024

Formula

Conjecture: D-finite with recurrence (n+6) *(8587*n^2 +62958*n +61667) *a(n) +(8587*n^3 -377960*n^2 -2268967*n -1091596) *a(n-1) -2 *(2*n-1) *(42935*n^2 -14497*n -123334) *a(n-2)=0. - R. J. Mathar, Dec 10 2015