A071277
a(1) = 1; a(n) = smallest palindrome which is a nontrivial product of n palindromes (repetitions allowed).
Original entry on oeis.org
1, 4, 8, 88, 252, 2112, 2112, 2112, 4224, 8448, 48384, 48384, 405504, 405504, 405504, 40955904, 677707776, 677707776, 677707776, 677707776
Offset: 1
a(4) = 88 = 2*2*2*11.
a(5) = 252 = 2*2*3*3*7.
A378140
a(n) is the least palindrome that has exactly n palindromic divisors other than itself and 1.
Original entry on oeis.org
1, 4, 6, 232, 44, 636, 66, 484, 888, 616, 2442, 2112, 4224, 6006, 2772, 26862, 23232, 232232, 46464, 297792, 66066, 88088, 222222, 252252, 213312, 21122112, 234432, 606606, 828828, 444444, 279972, 21211212, 666666, 2444442, 2114112, 2578752, 888888, 4228224, 42422424, 23555532, 54999945, 82711728
Offset: 0
a(4) = 44 because 44 is a palindrome with exactly 4 palindromic divisors other than itself and 1, namely 2, 4, 11 and 22, and no smaller palindrome works.
-
ispali:= proc(n) rev(n) = n end proc:
g:= proc(x) nops(select(ispali,numtheory:-divisors(x) minus {1,x})) end proc:
F:= proc(m)
local x1,x2,x3;
if m::even then
[seq(seq(rev(x1) + 10^(m/2)*x1, x1 = 10^(m/2-1) .. 10^(m/2)-1))]
else
[seq(seq(rev(x1) + 10^((m-1)/2)*x2 + 10^((m+1)/2)*x1,x2=0..9),x1=10^((m-1)/2-1)..10^((m-1)/2)-1)];
fi
end proc:
N:= 50: # for a(0) .. a(N)
V:= Array(0..N): count:= 0:
for d from 1 while count
Showing 1-2 of 2 results.