cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A378140 a(n) is the least palindrome that has exactly n palindromic divisors other than itself and 1.

Original entry on oeis.org

1, 4, 6, 232, 44, 636, 66, 484, 888, 616, 2442, 2112, 4224, 6006, 2772, 26862, 23232, 232232, 46464, 297792, 66066, 88088, 222222, 252252, 213312, 21122112, 234432, 606606, 828828, 444444, 279972, 21211212, 666666, 2444442, 2114112, 2578752, 888888, 4228224, 42422424, 23555532, 54999945, 82711728
Offset: 0

Views

Author

Robert Israel, Jan 08 2025

Keywords

Examples

			a(4) = 44 because 44 is a palindrome with exactly 4 palindromic divisors other than itself and 1, namely 2, 4, 11 and 22, and no smaller palindrome works.
		

Crossrefs

Programs

  • Maple
    ispali:= proc(n) rev(n) = n end proc:
    g:= proc(x) nops(select(ispali,numtheory:-divisors(x) minus {1,x})) end proc:
    F:= proc(m)
       local x1,x2,x3;
       if m::even then
         [seq(seq(rev(x1) + 10^(m/2)*x1, x1 = 10^(m/2-1) .. 10^(m/2)-1))]
       else
         [seq(seq(rev(x1) + 10^((m-1)/2)*x2 + 10^((m+1)/2)*x1,x2=0..9),x1=10^((m-1)/2-1)..10^((m-1)/2)-1)];
       fi
    end proc:
    N:= 50: # for a(0) .. a(N)
    V:= Array(0..N): count:= 0:
    for d from 1 while count 
    				

A071276 a(1) = 1; a(n) = smallest palindrome which is a nontrivial product of n distinct palindromes.

Original entry on oeis.org

1, 6, 66, 252, 2112, 46464, 23677632, 880121088, 88892229888
Offset: 1

Views

Author

Amarnath Murthy, Jun 07 2002

Keywords

Examples

			252=2*3*6*7 => a(4)=252.
		

Crossrefs

Extensions

Corrected and extended by Sascha Kurz, Jan 02 2003
a(7)-a(8) from Sean A. Irvine, Jul 07 2024
a(9) from Michael S. Branicky, Jul 08 2024
Name corrected by Robert Israel, Jan 08 2025

A088114 Smallest palindrome which can be expressed as the product of n palindromes > 1 (not necessarily distinct).

Original entry on oeis.org

2, 4, 8, 88, 252, 2112, 2112, 2112, 4224, 8448, 48384, 48384, 405504, 405504, 405504, 40955904, 677707776, 677707776, 677707776, 677707776, 677574475776, 677574475776, 42833977933824, 6929958668599296
Offset: 1

Views

Author

Amarnath Murthy, Sep 25 2003

Keywords

Comments

No more terms < 10^14. - David Wasserman, Jul 21 2005
The sequence is infinite. One can always multiply an n-digit palindrome by 10^n+1 to get another term. - Franklin T. Adams-Watters, Jun 06 2006
a(25) > 10^18.

Examples

			a(6) = a(7) =a(8) = 2112
2112 = 2*2*2*2*4*33
2112 = 2*2*2*2*2*2*33
2112 = 2*2*2*2*2*2*3*11
		

Crossrefs

Cf. A071277. [From R. J. Mathar, Sep 11 2008]

Extensions

More terms from David Wasserman, Jul 21 2005
Definition edited and a(24) from Donovan Johnson, Sep 22 2009
Showing 1-3 of 3 results.