A071284 Denominators of Peirce sequence of order 4.
2, 4, 3, 1, 4, 3, 4, 2, 3, 4, 2, 4, 3, 1, 4, 3, 4, 2, 3, 4, 2, 4, 3, 1, 4, 3, 4, 2, 3, 4, 2, 4, 3, 1, 4, 3, 4, 2, 3, 4, 2, 4, 3, 1, 4, 3, 4, 2, 3, 4, 2, 4, 3, 1, 4, 3, 4, 2, 3, 4, 2, 4, 3, 1, 4, 3, 4, 2, 3, 4, 2, 4, 3, 1, 4, 3, 4, 2, 3, 4
Offset: 0
Examples
The Peirce sequences of orders 1, 2, 3, 4, 5 begin: 0/1 1/1 2/1 3/1 4/1 5/1 6/1 7/1 ... 0/2 0/1 1/2 2/2 1/1 3/2 4/2 2/1 ... (numerators are A009947) 0/2 0/3 0/1 1/3 1/2 2/3 2/2 3/3 ... 0/2 0/4 0/3 0/1 1/4 1/3 2/4 1/2 ... 0/2 0/4 0/5 0/3 0/1 1/5 1/4 1/3 ...
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 151.
Formula
Conjectures from Colin Barker, Mar 29 2017: (Start)
G.f.: (4*x^9 + 3*x^8 + 2*x^7 + 4*x^6 + 3*x^5 + 4*x^4 + x^3 + 3*x^2 + 4*x + 2)/(1 - x^10).
a(n) = a(n-10) for n>9.
(End)
Extensions
More terms from Reiner Martin, Oct 15 2002