cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369021 Numbers k such that k, k+1 and k+2 have the same maximal exponent in their prime factorization.

Original entry on oeis.org

5, 13, 21, 29, 33, 37, 41, 57, 65, 69, 77, 85, 93, 98, 101, 105, 109, 113, 129, 137, 141, 157, 165, 177, 181, 185, 193, 201, 209, 213, 217, 221, 229, 237, 253, 257, 265, 281, 285, 301, 309, 317, 321, 329, 345, 353, 357, 365, 381, 389, 393, 397, 401, 409, 417, 429
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2024

Keywords

Comments

Numbers k such that A051903(k) = A051903(k+1) = A051903(k+2).
The asymptotic density of this sequence is d(2,3) + Sum_{k>=2} (d(k+1,3) - d(k,3) + 3*d2(k,2,1) - 3*d2(k,1,2)) = 0.13122214221443994377..., where d(k,m) = Product_{p prime} (1 - m/p^k) and d2(k,m1,m2) = Product_{p prime} (1 - m1/p^k - m2/p^(k+1)).

Crossrefs

Subsequence of A369020.
Subsequences: A007675, A071319.

Programs

  • Mathematica
    emax[n_] := emax[n] = Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; Select[Range[200], emax[#] == emax[# + 1] == emax[#+2] &]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2]));
    lista(kmax) = {my(e1 = 0, e2 = 0, e3); for(k = 3, kmax, e3 = emax(k); if(e1 == e2 && e2 == e3, print1(k-2, ", ")); e1 = e2; e2 = e3);}

A071320 Least of four consecutive numbers which are cubefree and not squarefree, i.e., numbers k such that {k, k+1, k+2, k+3} are in A067259.

Original entry on oeis.org

844, 1681, 8523, 8954, 10050, 10924, 11322, 17404, 19940, 22020, 23762, 24450, 25772, 27547, 30923, 30924, 33172, 34347, 38724, 39050, 39347, 40050, 47673, 47724, 47825, 49147, 54585, 55449, 57474, 58473, 58849, 58867, 59924, 62865
Offset: 1

Views

Author

Labos Elemer, May 29 2002

Keywords

Comments

The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 0, 0, 1, 4, 57, 555, 5492, 55078, 551443, 5512825, ... . Apparently, the asymptotic density of this sequence exists and equals 0.000551... . - Amiram Eldar, Jan 18 2023

Examples

			k = 844 is a term since 844 = 2^2*211, k+1 = 845 = 5*13^2, k+2 = 846 = 2*3^2*47, and k+4 = 847 = 7*11^2.
		

Crossrefs

Subsequence of A067259, A071318 and A071319.

Programs

  • Mathematica
    With[{s = Select[Range[10^5], And[MemberQ[#, 2], FreeQ[#, k_ /; k > 2]] &@ FactorInteger[#][[All, -1]] &]}, Function[t, Part[s, #] &@ SequencePosition[t, {1, 1, 1}][[All, 1]]]@ Differences@ s] (* Michael De Vlieger, Jul 30 2017 *)

Formula

A051903(k) = A051903(k+1) = A051903(k+2) = A051903(k+3) = 2 when k is a term.
Showing 1-2 of 2 results.