cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A369020 Numbers k such that k and k+1 have the same maximal exponent in their prime factorization.

Original entry on oeis.org

2, 5, 6, 10, 13, 14, 21, 22, 29, 30, 33, 34, 37, 38, 41, 42, 44, 46, 49, 57, 58, 61, 65, 66, 69, 70, 73, 75, 77, 78, 80, 82, 85, 86, 93, 94, 98, 99, 101, 102, 105, 106, 109, 110, 113, 114, 116, 118, 122, 129, 130, 133, 135, 137, 138, 141, 142, 145, 147, 154, 157
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2024

Keywords

Comments

Differs from A358817 by having the terms 99, 165, 166, ..., which are not in A358817, and not having the terms 1, 440, 1331, 1575, ..., which are in A358817.
Numbers k such that A051903(k) = A051903(k+1).
If k is a term then k*(k+1) is a term of A362605.
The asymptotic density of this sequence is d(2) + Sum_{k>=2} (d(k) + d(k+1) - 2 * d2(k)) = 0.36939178586283962461..., where d(k) = Product_{p prime} (1 - 2/p^k) and d2(k) = Product_{p prime} (1 - 1/p^k - 1/p^(k+1)).

Crossrefs

Programs

  • Mathematica
    emax[n_] := emax[n] = Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; Select[Range[200], emax[#] == emax[# + 1] &]
  • PARI
    emax(n) = if(n == 1, 0, vecmax(factor(n)[, 2]));
    lista(kmax) = {my(e1 = 0, e2); for(k = 2, kmax, e2 = emax(k); if(e1 == e2, print1(k-1, ", ")); e1 = e2);}

A369022 a(n) is the least start of a run of exactly n consecutive integers with the same maximal exponent in their prime factorization, or -1 if no such run exists.

Original entry on oeis.org

1, 2, 5, 844, 30923, 671346, 8870025
Offset: 1

Views

Author

Amiram Eldar, Jan 12 2024

Keywords

Comments

a(8) > 3.7*10^10.
a(8) <= 1770019255373287038727484868192109228824 which is the conjectured value of A219452(8)+1. - Giorgos Kalogeropoulos, Jan 15 2024

Crossrefs

Similar sequences: A071125, A219452, A323253.

Programs

  • Mathematica
    emax[n_] := Max[FactorInteger[n][[;; , 2]]]; emax[1] = 0; ind = Position[Differences[Table[emax[n], {n, 1, 10^6}]], _?(# != 0 &)] // Flatten; d = Differences[ind]; seq = {1}; Do[i = FirstPosition[d, k]; If[MissingQ[i], Break[]]; AppendTo[seq, ind[[i[[1]]]] + 1], {k, 2, Max[d]}]; seq
  • PARI
    emax(n) = vecmax(factor(n)[, 2]);
    lista(len) = {my(v = vector(len), w = [0], m, c = 0, k = 2); while(c < len, e = emax(k); m = #w; if(e == w[m], w = concat(w, e), if(m < = len && v[m] == 0, v[m] = k-m; c++); w = [e]); k++); v;}

Formula

A051903(a(n)) >= k for 2^k <= n < 2^(k+1)-1.
Showing 1-2 of 2 results.