cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110681 A convolution triangle of numbers based on A071356.

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 72, 64, 30, 8, 1, 272, 260, 140, 48, 10, 1, 1064, 1072, 636, 256, 70, 12, 1, 4272, 4480, 2856, 1288, 420, 96, 14, 1, 17504, 18944, 12768, 6272, 2320, 640, 126, 16, 1, 72896, 80928, 57024, 29952, 12192, 3852, 924, 160, 18, 1
Offset: 0

Views

Author

Philippe Deléham, Sep 14 2005

Keywords

Examples

			Triangle starts:
   1;
   2,  1;
   6,  4,  1;
  20, 16,  6,  1;
  72, 64, 30,  8,  1;
  ...
		

Crossrefs

Cf. A071356 (1st column), A071357 (2nd column).
Cf. A052705 (diagonal sums), A001003 (row sums).

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = Which[n == k == 0, 1, n == 0, 0, k == 0, 0, k > n, 0, True, T[n - 1, k - 1] + 2 T[n - 1, k] + 2 T[n - 1, k + 1]]; Table[T[n, k], {n, 0, 10}, {k, n}] // Flatten (* Michael De Vlieger, Nov 05 2017 *)

Formula

T(0, 0) = 1; T(n, k) = 0 if k<0 or if k>n; T(n, k) = T(n-1, k-1) + 2*T(n-1, k) + 2*T(n-1, k+1).
Sum_{k, k>=0} T(m, k)*T(n, k)*2^k = T(m+n, 0) = A071356(m+n).
Sum_{k, k>=0} T(n, k)*(2^(k+1) - 1) = 5^n.
Sum_{k, k>=0} (-1)^(n-k)*T(n, k)*(2^(k+1) - 1) = 1.

A122877 Expansion of (1-2*x-3*x^2-(1-x)*sqrt(1-2*x-7*x^2))/(8*x^3).

Original entry on oeis.org

0, 1, 2, 7, 20, 65, 206, 679, 2248, 7569, 25690, 88055, 303964, 1056497, 3693158, 12977655, 45813008, 162400609, 577843890, 2063053991, 7388487460, 26535797729, 95552015614, 344897769991, 1247685613272
Offset: 0

Views

Author

Paul Barry, Sep 16 2006

Keywords

Comments

Binomial transform is A071357.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x - 3 x^2 - (1 - x) Sqrt[1 - 2 x - 7 x^2])/(8 x^3), {x, 0, 24}], x] (* Michael De Vlieger, Apr 17 2020 *)
  • Maxima
    a(n):=sum(binomial(j,n-j+3)*2^(n-j+2)*binomial(n+1,j),j,0,n+1)/(n+1); /* Vladimir Kruchinin, May 19 2014 */

Formula

a(n) = Sum_{k=0..n} C(n,k)*2^((k-1)/2)*C((k-1)/2+1)*(1-(-1)^k)/2, where C(n)=A000108(n).
a(n) = (1/Pi)*Integral_{x=1-2*sqrt(2)..1+2*sqrt(2)} x^n*sqrt(-x^2+2x+7)*(x-1)/8.
a(n) = (Sum_{j=0..n+1} binomial(j,n-j+3)*2^(n-j+2)*binomial(n+1,j))/(n+1). - Vladimir Kruchinin, May 19 2014
D-finite with recurrence: (n+3)*a(n) + (-3*n-4)*a(n-1) + (-5*n-1)*a(n-2) + 7*(n-2)*a(n-3) = 0. - R. J. Mathar, Feb 23 2015
a(n) ~ (1 + 2*sqrt(2))^(n + 3/2) / (sqrt(Pi) * 2^(5/4) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
Showing 1-2 of 2 results.