A071403 Which squarefree number is prime? a(n)-th squarefree number equals n-th prime.
2, 3, 4, 6, 8, 9, 12, 13, 16, 18, 20, 24, 27, 29, 31, 33, 37, 38, 42, 45, 46, 50, 52, 56, 61, 62, 64, 67, 68, 71, 78, 81, 84, 86, 92, 93, 96, 100, 103, 105, 109, 110, 117, 118, 121, 122, 130, 139, 141, 142, 145, 149, 150, 154, 158, 162, 166, 167, 170, 172, 174, 180
Offset: 1
Keywords
Examples
a(25)=61 because A005117(61) = prime(25) = 97. From _Gus Wiseman_, Dec 08 2024: (Start) The squarefree numbers up to prime(n) begin: n = 1 2 3 4 5 6 7 8 9 10 ---------------------------------- 2 3 5 7 11 13 17 19 23 29 1 2 3 6 10 11 15 17 22 26 1 2 5 7 10 14 15 21 23 1 3 6 7 13 14 19 22 2 5 6 11 13 17 21 1 3 5 10 11 15 19 2 3 7 10 14 17 1 2 6 7 13 15 1 5 6 11 14 3 5 10 13 2 3 7 11 1 2 6 10 1 5 7 3 6 2 5 1 3 2 1 The column-lengths are a(n). (End)
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Position[Select[Range[300], SquareFreeQ], ?PrimeQ][[All, 1]] (* _Michael De Vlieger, Aug 17 2023 *)
-
PARI
lista(nn)=sqfs = select(n->issquarefree(n), vector(nn, i, i)); for (i = 1, #sqfs, if (isprime(sqfs[i]), print1(i, ", "));); \\ Michel Marcus, Sep 11 2013
-
PARI
a(n,p=prime(n))=sum(k=1, sqrtint(p), p\k^2*moebius(k)) \\ Charles R Greathouse IV, Sep 13 2013
-
PARI
a(n,p=prime(n))=my(s); forfactored(k=1, sqrtint(p), s+=p\k[1]^2*moebius(k)); s \\ Charles R Greathouse IV, Nov 27 2017
-
PARI
first(n)=my(v=vector(n),pr,k); forsquarefree(m=1,n*logint(n,2)+3, k++; if(m[2][,2]==[1]~, v[pr++]=k; if(pr==n, return(v)))) \\ Charles R Greathouse IV, Jan 08 2018
-
Python
from math import isqrt from sympy import prime, mobius def A071403(n): return (p:=prime(n))+sum(mobius(k)*(p//k**2) for k in range(2,isqrt(p)+1)) # Chai Wah Wu, Jul 20 2024
Formula
a(n) ~ (6/Pi^2) * n log n. - Charles R Greathouse IV, Nov 27 2017
From Gus Wiseman, Dec 08 2024: (Start)
a(n) = A112929(n) + 1.
(End)
Comments