cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A228591 Determinant of the n X n (0,1)-matrix with (i,j)-entry equal to 1 if and only if i + j is 2 or an odd composite number.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -9, 81, 9, -1225, -2500, 2500, 2500, -225, -121, 841, 19044, -29584, -355216, 1527696, 141376, -40000, -40000, 10000, 59536, -258064, -139876, 935089, 885481, -16384, -1876900, 1710864, 818875456, -22896531856, -23799232900, 66328911936, 158281561, -45320023225
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 27 2013

Keywords

Comments

Conjecture: a(n) = 0 for no n > 15.
We observe that (-1)^{n*(n-1)/2}*a(n) is always a square. This is a special case of the following general result established by Zhi-Wei Sun.
Theorem: Let M = (m_{i,j}) be an n X n symmetric matrix over a commutative ring. Suppose that the (i,j)-entry m_{i,j} is zero whenever i + j is even and greater than 2. If n is even, then (-1)^{n/2}*det(M) = D(n)^2, where D(n) denotes the determinant |m_{2i,2j-1}|{i,j = 1,...,n/2}. If n is odd, then (-1)^{(n-1)/2}*det(M) = m{1,1}*D(n)^2, where D(n) is the determinant |m_{2i,2j+1}|_{i,j = 1,...,(n-1)/2}.
This theorem extends the result mentioned in A069191.

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[If[(i+j==2)||(Mod[i+j,2]==1&&PrimeQ[i+j]==False),1,0],{i,1,n},{j,1,n}]]
    Table[a[n],{n,1,50}]

A228557 Determinant of the n X n matrix with (i,j)-entry equal to 1 or 0 according as i + j and i + j + 2 are twin primes or not.

Original entry on oeis.org

0, -1, 0, 1, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -4, 0, 64, 0, -324, 0, 81, 0, -1, 0, 16, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 25 2013

Keywords

Comments

Clearly p is odd if p and p + 2 are twin primes. If sigma is a permutation of {1,...,n}, and i + sigma (i) and i + sigma(i) + 2 are twin primes for all i = 1,...,n, then we must have sum_{i=1}^n (i + sigma(i)) == n (mod 2) and hence n is even. Therefore a(n) = 0 if n is odd.
By the general result mentioned in A228591, (-1)^n*a(2*n) equals the square of A228615(n).
Zhi-Wei Sun made the following general conjecture:
Let d be any positive even integer, and let D(d,n) be the n X n determinant with (i,j)-entry eual to 1 or 0 according as i + j and i + j + d are both prime or not. Then D(d,2*n) is nonzero for large n.
Note that when n is odd we have D(d,n) = 0 (just like a(n) = 0). Also, the conjecture implies de Polignac's conjecture that there are infinitely many primes p such that p and p + d are both prime.

Examples

			a(1) = 0 since {2, 4} is not a twin prime pair.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[If[PrimeQ[i+j]==True&&PrimeQ[i+j+2]==True,1,0],{i,1,n},{j,1,n}]]
    Table[a[n],{n,1,100}]

A228559 Determinant of the n X n matrix with (i,j)-entry equal to 1 or 0 according as i + j is a Sophie Germain prime or not.

Original entry on oeis.org

1, -1, -1, 1, 0, -1, -1, 1, 1, -1, 0, 1, 1, -1, -4, 16, 0, -64, -64, 64, 0, 0, 0, 0, 0, -64, -64, 64, 0, -16, -4, 1, 1, -1, 0, 4, 16, -64, -144, 324, 0, -81, -9, 1, 4, -16, 0, 64, 64, -64, 0, 0, 0, 0, 0, 262144, 4194304, -67108864, 0, 1073741824
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 25 2013

Keywords

Comments

If p > 3 and 2*p+1 are both prime, then p == -1 (mod 6). If tau is a permutation of {1,...,n}, and i + tau(i) is a Sophie Germain prime for each i = 1,...,n, then n*(n+1) = sum_{i=1}^n (i + tau(i)) is congruent to -n or 2 - (n - 1) or 3 - (n - 1) or 3 + 3 - (n - 2) modulo 6, which is impossible when n == -1 (mod 6). Therefore a(6*n-1) = 0 for all n > 0.
Note also that (-1)^{n*(n-1)/2}*a(n) is always a square in view of the comments in A228591.
Conjecture: a(n) is nonzero if n is greater than 55 and not congruent to 5 modulo 6.
Zhi-Wei Sun also had some similar conjectures. For example, if b(n) denotes the n X n determinant with (i,j)-entry equal to 1 or 0 according as i + j and 2*(i + j) - 1 are both prime or not, then b(n) is nonzero when n is greater than 125 and not congruent to 3 modulo 6. (Just like a(6*n-1) = 0, we can show that b(6*n-3) = 0.)

Examples

			a(1) = 1 since 1 + 1 is a Sophie Germain prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[If[PrimeQ[i+j]==True&&PrimeQ[2(i+j)+1]==True,1,0],{i,1,n},{j,1,n}]]
    Table[a[n],{n,1,20}]
    Det/@Table[If[AllTrue[{i+j,2(i+j)+1},PrimeQ],1,0],{n,60},{i,n},{j,n}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 26 2017 *)

A228561 Determinant of the n X n matrix with (i,j)-entry equal to 1 or 0 according as i + j and 4*(i + j)^2 + 1 are both prime or not.

Original entry on oeis.org

1, -1, -1, 0, 1, -1, -1, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, -1, -1, 0, 4, -16, -9, 25, 4, -81, -81, 81, 841, -5929, -3969, 19600, 69169, -667489, -285156, 80656, 276676, -790321, -60025, 3136, 10816, -40000, -45369, 221841, 86436, -168100, -12100, 13225, 11881, -87616, -71289, 729
Offset: 1

Views

Author

Zhi-Wei Sun, Aug 25 2013

Keywords

Comments

Conjecture: a(n) is nonzero for each n > 28.
This implies that there are infinitely many primes p with 4*p^2 + 1 also prime. Note also that (-1)^{n*(n-1)/2}*a(n) is always a square in view of the comments in A228591.

Examples

			a(1) = 1 since  1 + 1 = 2 and 4*2^2 + 1 = 17 are both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=Det[Table[If[PrimeQ[i+j]==True&&PrimeQ[4(i+j)^2+1]==True,1,0],{i,1,n},{j,1,n}]]
    Table[a[n],{n,1,30}]
Showing 1-4 of 4 results.